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To Karen

Los rios no llevan agua,
el sol las fuentes secd . ..

i Yo sé donde hay una fuente
que no ha de secar el sol!
LLa fuente que no se agota
es mi propio corazon. ..

—V. Ruiz Aguilera (1862)
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Preface

The eighth edition is a major revision that streamlines the presentation of the text ma-
terial with emphasis on the applications and computations in operations research:

Chapter 2 is dedicated to linear programming modeling, with applications in the
areas of urban renewal, currency arbitrage, investment, production planning,
blending, scheduling, and trim loss. New end-of-section problems deal with topics
ranging from water guality management and traffic control to warfare.

Chapter 3 presents the general LP sensitivity analysis, including dual prices and
reduced costs, in a simple and straightforward manner as a direct extension of the
simplex tableau computations.

Chapter 4 is now dedicated to LP post-optimal analysis based on duality.

An Excel-based combined nearest neighbor-reversal heuristic 1s presented for
the traveling salesperson problem.

Markov chains treatment has been expanded into new Chapter 17.

The totally new Chapter 24" presents 15 fully developed real-life applications.
The analysis, which often cuts across more than one OR technique (e.g., heuristics
and LP, or ILP and queuing), deals with the modeling, data collection, and com-
putational aspects of solving the problem. These applications are cross-referenced
in pertinent chapters to provide an appreciation of the use of OR techniques in
practice.

The new Appendix E" includes approximately 50 mini cases of real-life situations
categorized by chapters.

More than 1000 end-of-section problem are included in the book.

Each chapter starts with a siudy guide that facilitates the understanding of the
material and the effective use of the accompanying software.

The integration of software in the text allows testing concepts that otherwise
could not be presented effectively:

L. Excel spreadsheet implementations are used throughout the book, includ-
ing dynamic prograrnming, traveling salesperson, inventory, AHP, Bayes’
probabilities, “electronic” statistical tables, queuing, simulation, Markov
chains, and nonlinear programming. The interactive user input in some
spreadsheets promotes a better understanding of the underlying techniques.

2. The use of Excel Solver has been expanded throughout the book, particu-
larly in the areas of linear, network, integer, and nonlinear programming.

3. The powerful commercial modeling language, AMPL®, has been integrated
in the book using numerous examples ranging from linear and network to

*Contained on the CD-ROM.

e -
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Preface

integer and nonlinear programming. The syntax of AMPL is given in Appendix
A and its material cross-referenced within the examples in the book.
4. TORA continue to play the key role of tutorial software.
* All computer-related material has been deliberately compartmentalized either in
separate sections or as subsection titled AMPL/Excel/Solver/TORA moment to
minimize disruptions in the main presentation in the book.

To keep the page count at a manageable level, some sections, complete chapters,
and two appendixes have been moved to the accompanying CD. The selection of the
excised material is based on the author’s judgment regarding frequency of use in intro-
ductory OR classes.
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1.1

CHAPTER 1

What Is Operations Research?

Chapter Guide. The first formal activities of Operations Research (OR) were initiated
in England during World War 11, when a team of British scientists set out to make sci-
entifically based decisions regarding the best utilization of war materiel. After the war,
the ideas advanced in military operations were adapted to improve efficiency and pro-
ductivity in the civilian sector.

This chapter will familiarize you with the basic terminology of operations re-
search, inciuding mathematical modeling, feasible solutions, optimization, and iterative
computations. You will learn that defining the problem correctly is the most important
(and most difficult) phase of practicing OR. The chapter also emphasizes that, while
mathematical modeling 1s a cornerstone of OR, intangible (unquantifiable) factors
(such as human behavior) must be accounted for in the final decision. As you proceed
through the book, you will be presented with a variety of applications through selved
examples and chapter problems. In particular, Chapter 24 (on the CD) is entirely de-
voted to the presentation of fully developed case analyses. Chapter materials are cross-
referenced with the cases to provide an appreciation of the use of OR in practice.

OPERATIONS RESEARCH MODELS

Imagine that you have a 5-week business commitment between Fayetteville (FYV)
and Denver (DEN). You fly out of Fayetteville on Mondays and return on Wednes-
days. A regular round-trip ticket costs $400, but a 20% discount is granted if the dates
of the ticket span a weekend. A one-way ticket in either direction costs 75% of the reg-
ular price. How should you buy the tickets for the 5-week period?

We can look at the situation as a decision-making problem whose solution re-
quires answering three questions:

1. What are the decision alternatives?
2. Under what restrictions is the decision made?
3. What is an appropriate objective criterion for evaluating the alternatives?
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Chapter 1 What Is Operations Research?

Three alternatives are considered:

L. Buy five regular FYV-DEN-FYV for departure on Monday and return on Wednes-
day of the same week.

2. Buy one FYV-DEN, four DEN-FYV-DEN that span weekends, and one DEN-
FYV.

3. Buy one FYV-DEN-FYV to cover Monday of the first week and Wednesday of
the last week and four DEN-FYV-DEN to cover the remaining legs. All tickets in
this alternative span at least one weekend.

The restriction on these options is that you should be able to leave FYV on Monday
and return on Wednesday of the same week.

An obvious objective criterion for evaluating the proposed alternative is the
price of the tickets. The alternative that yields the smallest cost is the best. Specifically,
we have

Alternative 1 cost = 5 X 400 = $2000
Alternative 2 cost = .75 X 400 + 4 X {.8 X 400) + .75 x 400 = $1880
5 X (.8 X 400) = $1600

Alternative 3 cost

Thus, you should choose alternative 3.

Though the preceding example illustrates the three main components of an OR
model—alternatives, objective criterion, and constraints—situations differ in the de-
tails of how each component is developed and constructed. To illustrate this point, con-
sider forming a maximum-area rectangle out of a piece of wire of length L inches. What
should be the width and height of the rectangle?

In contrast with the tickets example, the number of alternatives in the present ex-
ample is not finite; namely, the width and height of the rectangle can assume an infinite
number of values. To formalize this observation, the aiternatives of the problem are
identified by defining the width and height as continuous (algebraic) variables.

Let

w = width of the rectangle in inches
h = height of the rectangle in inches

Based on these defiritions, the restrictions of the situation can be expressed verbally as

1. Width of rectangle + Height of rectangle = Half the length of the wire
2. Width and height cannot be negative

These restrictions are translated algebraically as

1. 2(w+h)=1L
2. w=0h=0
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The only remaining component now is the objective of the problem; namely,
maximization of the area of the rectangle. Let z be the area of the rectangle, then the
complete model becormnes

Maximize z = wh
subject to
2{w+ h) =L
w,h =0
The optimal solution of this modelisw = A = "f which calls for constructing a square
shape.

Based on the preceding two examples, the general OR model can be organized in
the following general format:

Maximize or minimize Objective Function
subject to

Constraints

A solution of the mode is feasible if it satisfies all the constraints. It is optimal if,
in addition to being feasible, it yields the best (maximum or minimum) value of the ab-
jective function. In the tickets example, the problem presents three feasible alterna-
tives, with the third alternative yielding the optimal solution. In the rectangie problem,
a feasible alternative must satisfy the condition w + k = % with w and # assuming
nonpegative values. This leads to an infinite number of feasibie solutions and, unlike
the tickets problem, the optimum solution is determined by an appropriate mathemat-
ical tool (in this case, differential calculus).

Though OR models are designed to “optimize” a specific objective criterion sub-
ject to a set of constraints, the quality of the resulting solution depends on the com-
pleteness of the model in representing the real system. Take, for example, the tickets
model. If one is not able to 1dentify all the dominant alternatives for purchasing the tick-
ets, then the resulting solution is optimurm only relative to the choices represented in the
model. To be specific, if alternative 3 is left out of the model, then the resulting “opti-
mum” solution would call for purchasing the tickets for $1880, which is a suboptimal so-
lution. The conclusion s that “the” optimum solution of a model is best only for that
model. If the model happens to represent the real system reasonably well, then its solu-
tion is optimum also for the real situation.

PROBLEM SET 1.1A

1. In the tickets example, identify a fourth feasible alternative.
2. In the rectangle problem, identify two feasible solutions and determine which one is better.

3. Determine the optimal solution of the rectangle problem. (Hine: Use the constraint to ex-
press the objective function in terms of one variable, then use differential cafculus.)
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4. Amy, Jim, John, and Kelly are standing on the east bank of a river and wish to cross to
the west side using a canoe. The canoe can hold at most two people at a time. Amy, being
the most athletic, can row across the river in 1 minute. Jim, John, and Kelly would take 2,
5,and 10 minutes, respectively. If two people are in the canoe, the slower person dictates
the crossing time. The objective is for all four people to be on the other side of the river
in the shortest time possible.

(a) Identify at [east two feasible plans for crossing the river (remember, the canoe is the
only mode of transportation and it cannot be shuttled empty).

(b} Define the criterion for evaluating the alternatives.
*(c)' What is the smallest time for moving all four people to the other side of the river?

*5. In a baseball game, Jim is the pitcher and Joe is the batter. Suppose that Jim can throw
either a fast or a curve ball at random. If Joe correctly predicts a curve ball, he can main-
tain a .500 batting average, else if Jimn throws a curve ball and Joe prepares {or a fast ball,
his batting average is kept down to .200. On the other hand, if Joe correctly predicts a fast
ball, he gets a 300 batting average, ¢lse his batting average is only .100.

(a} Define the alternatives for this situation.

(b) Define the objective function for the problem and discuss how it differs from the
familiar optimization (maximization or minimizatton) of a criterion.
6. During the construction of a house, six joists of 24 feet each must be trimmed to the cor-
rect length of 23 feet. The operations for cutting a joist involve the following sequence:

Operation Time {(seconds)
1. Place joist on saw horses 15
2. Measure correct tength (23 feet) 5
3. Mark cutting line for circular saw 3
4. Trim joist to correct length 20
5. Stack trimmed joist in a designated area 20

Three persons are involved: Two loaders must work simultaneously on operations 1,2,
and 5, and one cutter handles operations 3 and 4. There are two pairs of saw horses on
which untrimmed joists are placed in preparation for cutting, and each pair can hold up
ta three side-by-side joists. Suggest a good schedule for trimming the six joists.

SOLVING THE OR MODEL

In OR, we do not have a single general technique to solve alt mathematical models that
can arise in practice. Instead, the type and complexity of the mathematical model dic-
tate the nature of the solution method. For example, in Section 1.1 the solution of the
tickets problem requires simple ranking of alternatives based on the total purchasing
price, whereas the solution of the rectangle problem utilizes differential calculus to de-
termine the maximum area.

The most prominent OR technique is linear programming. It is designed for
models with linear objective and constraint functions. Other technigues include integer
programming (in which the variables assume integer values), dynamic programming

'An asterisk (*) designates problems whose solution is provided in Appeadix C.

1.4
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(in which the original model can be decomposed into more manageable subproblems),
network programming (in which the problem can be modeled as a network), and
nonlinear programming (in which functions of the model are nonlmear). These are
only a few among many available OR tools.

A peculiarity of most OR techniques is that solutions are not generally obtained
in (formulalike) closed forms. Instead, they are determined by algerithms. An algo-
rithm provides fixed computational rules that are applied repetitively to the problem,
with each repetition {called iteration) moving the solution closer to the optimum. Be-
cause the computations associated with each iteration are typically tedious and volu-
minous, it is imperative that these algorithms be executed on the computer.

Some mathematical models may be so complex that it is impossible to solve them
by any of the available optimization algorithms. In such cases, it may be necessary to
abandon the search for the optimal solution and simply seek a good solution using
heuristics or rules of thumb.

QUEUING AND SIMULATION MODELS

Queuing and simulation deal with the study of waiting lines. They are not optimization
techniques, rather, they determine measures of performance of the waiting lines, such
as average waiting time in queue, average waiting time for service, and utilization of
service facilities.

Queuing models utilize probability and stochastic models t¢ analyze waiting lines,
and stmulation estimates the measures of performance by imitating the behavior of the
real system. In a way, simulation may be¢ regarded as the next best thing to observing a
real system. The main difference between queuing and simulation is that queuing mod-
els are purely mathematical, and hence are subject to specific assumptions that limit
their scope of application. Simulation, on the other hand, is flexible and can be used to
analyze practically any quemng situation.

The use of simulation is not without drawbacks The process of developing simu-
lation maodels is costly in both time and resources. Moreover, the execution of stmula-
tion models, even on the fastest computer, is usually slow.

ART OF MODELING

The illustrative models developed in Section 1.1 are true representations of real situa-
tions. This is a rare occurrence in OR, as the majority of applications usually involve
(varying degrees of) approximations. Figure 1.1 depicts the levels of abstraction that
characterize the development of an OR model. We abstract the assumed real world .
from the real situation by concentrating on the dominant variables that control the be-
havior of the real system. The model expresses in an amenable manner the mathemat-
ical functions that represent the behavior of the assumed real world.

To illustrate levels of abstraction in modeling, consider the Tyko Manufacturing
Company, where a variety of plastic containers are produced. When a production order
is issued to the production department, necessary raw materials are acquired from the
company’s stocks or purchased from outside sources. Once the production batch is
completed, the sales department takes charge of distributing the product to customers.
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Model

FIGURE 1.1
Leveis of abstraction in model development

A logical question in the analysis of Tyko’s situation is the determination of the
size of a production batch. How can this situation be represented by a model?

Looking at the overall system, a number of variables can bear directly on the
level of production, including the following (partial) list categorized by departments.

1. Production Departrnent: Production capacity expressed in terms of available ma-
chine and labor hours, in-process inventory, and quality control standards.

2. Materials Department: Available stock of raw matenals, delivery schedules from
outside sources, and storage limitations.

3. Sales Department: Sales forecast, capacity of distribution facilities, effectiveness
of the advertising campaign, and effect of competition.

Each of these variables affects the level of production at Tyko. Trying to establish ex-
plicit functional relationships between them and the level of production is a difficult
task indeed.

A first leve] of abstraction requires defining the boundaries of the assumed real
world. With some reflection, we can approximate the real system by two dominant
variables:

L. Production rate.
2. Consumption rate.

Determination of the production rate involves such variables as production capacity,
quality control standards, and availability of raw materials. The consumption rate is de-
termined from the variables associated with the sales department. In essence, simplifi-
cation from the real world to the assumed real world is achieved by “lumping” several
real-world variables into a single assumed-real-world variable.

It is easier now to abstract 2 model from the assumed real world. From the pro-
duction and consumption rates, measures of excess or shortage inventory can be estab-
lished. The abstracted model may then be constructed to balance the conflicting costs
of excess and shortage inventory—i.e., to minimize the total cost of inventory.

L
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MORE THAN JUST MATHEMATICS

Because of the mathematical nature of OR models, one tends to think that an OR
study is always rooted in mathematical analysis. Though mathematical modeling is a
cornerstone of OR, simpler approaches should be explored first. In some cases, a “com-
mon sense” solution may be reached through simple observations. Indeed, since the
human element invariably affects most decision probiems, a study of the psychology of
people may be key to solving the problem. Three illustrations are presented here to
support this argument.

1. Responding to complaints of slow elevator service in a large office building,
the OR team initially perceived the situation as a waiting-line problem that might re-
quire the use of mathematical queuing analysis or simulation. After studying the be-
havior of the people voicing the complaint, the psychologist on the team suggested
installing full-length mirrors at the entrance to the elevators. Miraculously the com-
plaints disappeared, as people were kept occupied watching themselves and others
while waiting for the elevator.

2. In a study of the check-in facilities at a large British airport, a United States-
Canadian consulting team used queuing theory to investigate and analyze the situa-
tion. Part of the solution recommended the use of well-placed signs to urge passengers
who were within 20 minutes from departure time to advance to the head of the queue
and request immediate service. The solution was not suecessful, because the passen-
gers, being mostly British, were “conditioned to very strict queuing behavior” and
hence were reluctant to move ahead of others waiting in the queue.

3. In a steel mill, ingots were first produced from iron ore and then used in the
manufacture of steel bars and beams. The manager noticed a long delay between the
ingots production and their transfer to the next manufacturing phase (where end prod-
ucts were manufactured). Ideally, to reduce the reheating cost, manufacturing shouid
start soon after the ingots left the furnaces. Initially the problem was perceived as a
line-balancing situation, which could be resolved either by reducing the output of in-
gots or by increasing the capacity of the manufacturing process. The OR team used
simple charts to summarize the output of the furnaces during the three shilts of the
day. They discovered that, even though the third shift started at 11:00 P.M., most of the
ingots were produced between 2:00 and 7:00 A.M. Further investigation revealed that
third-shift operators preferred to get long periods of rest at the start of the shift and
then make up for lost production during morning hours. The problem was solved by
“leveling out” the production of ingots throughout the shift.

Three conclusions can be drawn from these illustrations:

1. Before embarking on sophisticated mathematical modeling, the OR team
should explore the possibility of using “aggressive” ideas to resolve the situation. The
solution of the elevator problem by installing mirrors is rooted in human psychology
rather than in mathematical modeling. It 1s also simpler and less costly than any rec-
ommendation a mathematical model might have produced. Perhaps this 15 the reason
OR teams usually include the expertise of “outsiders” from nonmathematical fields
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(psychology in the case of the elevator problem). This point was recognized and imple-
mented by the first OR team in Britain during World War 11.

2, Solutions are rooted in people and not in technology. Any solution that does
not take human behavior into account is apt to fail. Even though the mathematical so-
Iution of the British airport problem may have been sound, the fact that the consulting
team was not aware of the culturat differences between the United States and Britain
{Americans and Canadians tend to be less formal) resulted ir an unimplementable
recommendation.

3. An OR study should never start with a bias toward using a specific mathemat-
ical tool before its use can be justified. For example, because linear programming is a
successful technique, there is a tendency to use it as the tool of cheoice for modeling
“any” situation. Such an approach usually leads to a mathematical model that is far re-
moved from the real situation. It is thus imperative that we first analyze available data,
using the simplest techniques where possible (e.g., averages, charts, and histograms),
with the objective of pinpointing the source of the problem. Once the problem is de-
fined, a decision can be made regarding the most appropriate tool for the solution.? In
the steel mill problem, simple charting of the ingots production was all that was need-
ed to clarify the situation.

PHASES OF AN OR STUDY

An OR study is rooted in teamwork, where the OR analysts and the client work side by
side. The OR analysts’ expertise in modeling must be complemented by the experience
and cooperation of the client for whom the study is being carried out.

As a decision-making tool, OR is both a science and an art. It is a science by
virtue of the mathematical techniques it embodies, and it is an art because the success
of the phases leading to the solution of the mathematical model depends largely on the
creativity and experience of the operations research team. Willemain (1994) advises
that “effective {OR] practice requires more than analytical competence: It also re-
quires, among other attributes, technical judgement (e.g., when and how to use a given
technique) and skills in communication and organizational survival.”

It is dafficult to prescribe specific courses of action (stmilar to those dictated by
the precise theory of mathematical models) for these intangible factors. We can, how-
ever, offer general guidelines for the implementation of OR in practice.

The principal phases for implementing OR in practice include

1. Definition of the problem.
2. Construction of the model.

*Deciding on a specific mathematical model before justilying its use is like “putting the cart before the
horse,” and it reminds me of the story of a frequent air traveler who was paranoid about the possibility of a
terrorist bomb on board the plane. He calculated the probability that such an event could occur, and though
quite small, il wasn’t small engugh to calm his anxiclies. From then on, he always carried a bomb in his brief-
case on the plane because, according to his caleulations, the probability of having nve bombs aboard the
plane was practically zero!

[
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3. Solution of the model,
4, Validation of the model.
5. Implementation of the solution.

Phase 3, dealing with model solution, 1s the best defined and generally the easiest to im-
plement in an OR study, because it deals mostly with precise mathematical models. Im-
piementation of the remaining phases is more an art than a theory.

Problem definition involves defining the scope of the problem under investiga-
tion. This function should be carried out by the eatire OR team. The aim is to identify
three principal elements of the decision problem: (1) description of the decision alter-
natives, (2) determination of the objective of the study, and (3) specification of the lim-
itations under which the modeled system operates.

Model construction entails an attempt to translate the problem definition into
mathematical relationships. If the resulting model fits one of the standard mathe-
matical models, such as linear programming, we can usually reach a solution by
using available algorithms. Alternatively, if the mathematical relationships are too
complex to allow the determination of an analytic solution, the OR team may opt to
simplify the model and use a heuristic approach, or they may consider the use of
simulation, 1If appropriate. In some cases, mathematical, simulation, and heuristic
models may be combined to solve the decision problem, as the case analyses in
Chapter 24 demonstrate.

Model solution is by far the simplest of all OR phases because it entails the use of
well-defined optimization algorithms. An important aspect of the model solution phase
1s sensitivity analysis. It deals with obtaining additjonal information about the behavior
of the optimum solution when the model undergoes some parameter changes. Sensitiv-
ity analysis 1s particularly needed when the parameters of the model cannot be esti-
mated accurately. In these cases, it is important to study the behavior of the optimum
solution in the neighborhood of the estimated parameters.

Model validity checks whether or not the proposed model does what it purports
to do—that ig, does it predict adequately the behavior of the system under study? Ini-
tially, the OR team should be convinced that the model’s output does not include
“surprises.” In other words, does the solution make sense? Are the results intuitively
acceptable? On the formal side, a common method for checking the validity of a
model is to compare its output with historical output data. The model is valid if,
under similar input conditions, it reasonably duplicates past performance. Generally,
however, there is no assurance that future performance will continue to duplicate
past behavior. Also, because the model is usually based on careful examination of
past data, the proposed comnparison is usually favorable. If the proposed model rep-
resents a new {nonexisting) system, no historical data would be available. In such
cases, we may use simulation as an independent tool for verifying the output of the
mathematical model.

Implementation of the solution of a validated model involves the translation of
the results into understandable operating instructions to be issued to the people who
will administer the recomrmended system. The burden of this task lies primarily with
the OR team.
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ABOUT THIS BOOK

Morris (1967) states that “the teaching of models is not equivalent to the teaching of
modeling.” I have taken note of this important statement during the preparation of the
eighth edition, making an effort to introduce the art of modeling in OR by including
realistic models throughout the book. Because of the importance of computations in
OR, the book presents extensive tools for carrying out this task, ranging from the tuto-
rial aidd TORA to the commercial packages Excel, Excel Solver,and AMPL.

A first course in OR should give the student a good foundation in the mathemat-
ics of OR as well as an appreciation of iis potential applications. This will provide OR
users with the kind of confidence that normally would be missing if training were con-
centrated only on the philesophical and artistic aspects of OR. Once the mathematical
foundation has been established, you can increase your capabilities in the artistic side
of OR modeling by studying published practical cases. To assist you in this regard,
Chapter 24 includes 15 fully developed and analyzed cases that cover most of the OR
models presented in this book. There are also some 50 cases that are based on real-life
applications in Appendix E on the CD. Additional case studies are available in journals
and publications. In particular, Interfaces (published by INFORMS) is a rich source of
diverse OR applications.
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CHAPTER 2

Modeling with Linear
Programming

Chapter Guide. This chapter concentrates on model formulation and computations in
linear programming (LP). It starts with the modeling and graphical solution of a two-
variable problem which, though highly simplified, provides a concrete understanding
of the basic concepts of LP and lays the foundation for the development of the general
simplex algorithm in Chapter 3. To illustrate the use of LP in the real worid, applica-
tions are formulated and solved in the areas of urban planning, currency arbitrage, in-
vestment, production planning and inventory control, gasohine blending, manpower
planning, and scheduling. On the computational side, two distinct types of software are
used in this chapter. (1) TORA, a totally menu-driven and self-documenting tutorial
program, is designed to heip you understand the basics of LP through interactive feed-
back. (2) Spreadsheet-based Excel Solver and the AMPL modeling language are com-
mercial packages designed for practical problems.

The material in Sections 2.1 and 2.2 is crucial for understanding later LP devel-
opments in the book. You will find TORA's mteractive graphical module especially
helpful in conjunction with Section 2.2. Section 2.3 presents diverse LP applications,
each followed by targeted problems.

Section 2.4 introduces the commercial packages Excel Solver and AMPL. Models
in Section 2.3 are solved with AMPL and Solver, and all the codes are included in fold-
er ch2Files. Additional Solver and AMPL models are included opportuaely in the suc-
ceeding chapters, and a detailed presentation of AMPL syntax is given in Appendix A.
A good way to learn AMPL and Solver is to experiment with the numerous models
presented throughout the book and to try to adapt them to the end-of-section prob-
lems The AMPL codes are cross-referenced with the material in Appendix A to facili-
tate the learning process.

The TORA, Solver, and AMPL materials have been deliberately compartmental-
ized either in separate sections or under the subheadings TORA/Solver/AMPL mo-
ment to minimize disruptions in the main text. Nevertheless, you are encouraged to
work end-of-section problems on the computer. The reason is that, at times, a mode!

N
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may look “correct” until you try to obtain a solution, and only then will you discover
that the formulation needs modifications.

‘This chapter includes summaries of 2 real-life applications, 12 solved examples, 2
Solver models, 4 AMPL models, 94 end-of-section problems, and 4 cases. The cases are
in Appendix E on the CD. The AMPL/Excel/Solver/TORA programs are in folder
ch2Files.

Real-Life Application—Frontier Airlines Purchases Fuel Economically

The fueling of an aircraft can take place at any of the stopovers along the flight route.
Fuel price varies among the stopovers, and potential savings can be realized by loading
extra fuel (called tankering) at a cheaper location for use on subsequent flight legs. The
disadvantage of tankering is the excess burn of gasoline resulting from the extra
weight. LP (and heuristics) is used to determine the optimum amount of tankering that
balances the cost of excess burn against the savings in fuel cost. The study, carried out
in 1981, resulted in net savings of about $350,000 per year. Case 1 in Chapter 24 on the
CD provides the details of the study. Interestingly, with the recent rise in the cost of
fuel, many airlines are now using LP-based tankering software to purchase fuel.

TWO-VARIABLE LP MODEL

This section deals with the graphical solution of a two-variable LP. Though two-vanable
problems hardly exist in practice, the treatment provides concrete foundations for the
development of the general simplex algorithm presented in Chapter 3.

Example 2.1-1 (The Reddy Mikks Company)

Reddy Mikks produces both interior and exterior paints from two raw matenals, M1 and M2.
The following table provides the basic data of the problem:

Tons of raw material per ton of

Maximum daily

Exterior paint Interior paint availability (tons)
Raw material, M1 6 4 24
Raw material, M2 1 2 6
Profit per ton ($1000) 5 4

A market survey indicates that the daily demand for interior paint cannot exceed that for
exterior paint by more than 1 ton. Also, the maximum daily demand for interior paint is 2 tons.

Reddy Mikks wants to determire the optimum (best) product mix of interior and exterior
paints thai maximizes the total daily profit.

The LP model, as in any OR model, has three basic components.

1. Decision variables that we seek to determine.
2. Objective (goal) that we need to optimize {maximize or minimize).
3. Constraints that the solution must satisfy.

P
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The proper definition of the decision variables is an essential ficst step in the development of the
model. Once done, the task of consiructing the objective function and the constraints becomes
more straightforward.

For the Reddy Mikks problem, we need (o determine the daily amounts to be produced of
exterior and interior paints. Thus the variables of the model are defined as

x; = Tons produced daily of exterior paint

X, = Tons produced daily of interior paint

To construct the objective function, note that the company wants to maximize (i.e., iIncrease
as much as possible) the total daily profit of both paints. Given that the profits per ton of exteri-
or and interior paints are 5 and 4 (thousand) dollars, respectively, it follows that

Totai profit from exterior paint = 5x, (thousand) doilars

Total profit from interior paint = 4x; (thousand} dollars

Letting z represent the total daily profit (in thousands of dollars), the objective of the company
is

Maximize 7 = 5xy, + 4.,

Next, we construct the constraints that restrict raw material usage and proeduct demand. The
raw material restrictions are expressed verbally as

(Usagc of araw material) - (Maximum raw malerial)
by both paints - availability

‘The daily usage of raw material M1 s § tons per ton of exierior paint and 4 tons per ton of inte-
rior paint. Thus

Usage of raw material M1 by exterior paint = 6x, tons/day

Usage of raw material M1 by interior paint = 4x, tons/day

Hence

Usage of raw material M1 by both paints = 6x, + 4x; tons/day

In a similar manner,
Usage of raw material M2 by both paints = 1x; + 2x; tons/day

Because the daily availabilities of raw materials M1 and M2 are limited 10 24 and 6 tons, respec-
tively, the associated restrictions are given as

6x; + 4x; = 24 (Raw malerial M1)
X +2x = 6  (Raw material M2)

The first demand restriction stipulates that the excess of the daily production of interior
over exterior paint, x; — x;, should not exceed 1 ton, which translates to

X —x =1 (Market limit)
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The second demand restriction stipulates that the maximum, daily demand of interior paint is
limited to 2 tons, which (ransiates to

x; = 2 (Demand limit)

An implicit (or “understood-to-be”) restriction is that variables x; and x, cannot assume
negative values. The nonnegativity restrictions, x; = 0, x; = 0, account for this requirement.
The complete Reddy Mikks modet is

Maximize z = 5x; + 4x,

subject to
6x; + 4x;, = 24 1)
X +2x= 6 {2)
—xy b Xy =] €]
Xy = 2 (4}
X, %2 0 (5)

Any values of x; and x, that satisfy e/ five constraints constitute a feasible solution. Otherwise,
the solution is infeasible. For example, the solution, x, = 3 tons per day and x; = 1 ton per day,
is feasible because it does not violate any of the constraints, including the nonnegativity restric-
tions. To verify this result, substitute (x; = 3, x; = 1) in the left-hand side of each constraint. In
constraint (1) we have 6x; + 4x; = 6 X 3 + 4 X 1 = 22, which is less than the right-hand side
of the constraint (= 24). Constraints 2 through 5 will yield simitar conclusions (verify!). On the
other hand, the solution x; = 4 and x, = 1 is infeasible because it does not satisfy constraint
(1)—namely, 6 X 4 + 4 X 1 = 28, which is larger than the right-hand side {= 24).

The goal of the problem is to find the best feasible solution, or the optimum, that maxi-
mizes the total profit. Before we can do that, we need to know how many feasible solutions the
Reddy Mikks problem has. The answer, as we will see from the graphical solution in Section
2.2,is “an infinite number,” which makes it impossible to solve the problem by enumeration.
Instead, we need a systematic procedure that will locate the optimum sofution in a finite num-
ber of steps. The graphical method in Section 2.2 and its algebraic generalization in Chapter 3
will explain how this can be accomplished.

Properties of the LP Model. In Example 2.1-1, the objective and the constraints are
all inear functions. Linearify implies that the LP must satisfy three basic properties:

1. Proportionality: This property requires the contribution of each decision
vartable in both the objective function and the constraints to be directly propor-
tional to the value of the variable. For example, in the Reddy Mikks model, the
quantities 5x; and 4x, give the profits for producing x; and x; tons of exterior and in-
terior paint, respectively, with the unit profits per ton, 5 and 4, providing the constants
of proportionality. If, on the other hand, Reddy Mikks grants some sort of quantity dis-
counts when sales exceed certain amounts, then the profit will no longer be propor-
tional to the production amounts, x; and x,, and the profit function becomes nonlinear.

2. Additivity: This property requires the tatal contribution of all the variables in
the objective function and in the constraints to be the direct sum of the individual
contributions of each variable. In the Reddy Mikks model, the total profit equals the

2.2
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sum of the two individual profit components. If, however, the two products compete for
market share in such a way that an increase in sales of one adversely affects the other,
then the additivify property 1s not satisfied and the model is no longer linear.

3. Certainty: All the objective and constraint coefficients of the LP model are de-
terministic. This means that they are known constants—a rare occurrence in real life,
where data are more likely to be represented by probabilistic distributions. In essence,
LP coefficients are average-value approximations of the probabilistic distributions. If
the standard deviations of these distributions are sufficiently small, then the approxi-
mation 1s acceptable. Large standard deviations can be accounted for directly by using
stochastic LP algorithms (Section 19.2.3) or indirectly by applying sensitivity analysis
to the optimum solution (Section 3.6).

PROBLEM SET 2.1A

1. For the Reddy Mikks model, construct each of the following constraints and express it
with a linear left-hand side and a constant right-hand side:

*(a) The daily demand for interior paint exceeds that of exterior paint by af least 1 ton.
(b) The daily usage of raw material M2 in tons is ar most 6 and at least 3.
*(c) The demand for inierior paint cannot be less than the demand for exterior paint.
(d) The minimum quantity that should be produced of both the interior and the exterior
paint is 3 tons.
“(e) The proportion of interior paint to the total production of both interior and exterior
paints must not exceed 5.

2. Determine the best feasible solution among the following (feasible and infeasible) sotu-
tions of the Reddy Mikks model:

@) y,,w=1x,=4
(b) x, =2,x;, =2
{(¢) x, =3, x;=15
d) x, =2, x=1.
) x;,=2,x, = ~1L
*3. For the feasible solution x; = 2, x; = 2 of the Reddy Mikks model, determine the un-
used amounts of raw materials M1 and M2.

4. Suppose that Reddy Mikks sells its exterior paint to a single wholesaler at a quantity dis-
count.The profit per ton is $5000 if the contractor buys no more than 2 tons daily and $4500
otherwise. Express the objective function mathematically. Is the resulting function linear?

2.2 GRAPHICAL LP SOLUTION
The graphical procedure includes two steps:

1. Determination of the feasible solution space.

2. Determination of the optimum solution from among all the feasible points in the
solution space.

The procedure uses two examples to show how maximization and minimization
objective functions are handled.
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2.2.1 Solution of a Maximization Model

Example 2.2-1
This example solves the Reddy Mikks model of Example 2.1-1.

Step 1.

FIGURE 2.1

Determination of the Feasible Solution Space:
First, we account for the nonnegativity constraints x, = G and x» = 0. In Figure 2.1,
the horizontal axis x; and the vertical axis x, represent the exterior- and interior-paint
variables, respectively. Thus, the nonnegativity of the variables restricts the solution-
space area to the first quadrant that lies above the x;-axis and to the right of the
Xy-axis.

To account for the remaining four constraints, first replace each inequality
with an equation and then graph the resulting straight line by locating two distinct
points on it. For example, after replacing 6x) + 4x; = 24 with the straight line

6x; + 4x; = 24, we can determine two distinct points by [irst setting x, = 0 to

obtain x, = % = 6 and then sefting x, = 0 to obtain x; = £ = 4. Thus, the line

passes through the two points (0, 6) and (4,0}, as shown by line (1) in Figure 2.1.
Next, consider the effect of the inequality. All it does is divide the (x|, x3)-plane
into two half-spaces, one on each side of the graphed line. Only one of these two
halves satisfies the inequality. To determine the correct side, choose {0,0) as a
reference point. If it satisfies the inequality, then the side in which it lies is the

Feasibie space of the Reddy Mikks model

*2
G
6 L Constraints:
6x, + 4, =24 (O
xl + 2&'1 = 6 @
5 |
-t =1 @

XZ'52®

s -
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feasible half-space, otherwise the other side is. The use of the reference point (0, 0) is
illustrated with the constraint 6x, + 4x; = 24. Because 6 X 0 + 4 X 0 = 0 is less
than 24, the half-space representing the inequality includes the origin (as shown by
the arrow 1n Figure 2.1).

It is convenient computationally to select (0, 0} as the reference point, unless the
line happens to pass through the origin, in which case any other point can be used.
For example, if we use the reference point (6, 0), the left-hand side of the first con-
straintis 6 X 6 + 4 X 0 = 36, which is larger than its right-hand side (= 24), which
means that the side in which (6, 0} lies is not feasible for the inequality
6x, + 4x; = 24. The conclusion is consistent with the one based on the reference
point (0, 0).

Application of the reference-point procedure to all the constraints of the model
produces the constraints shown in Figure 2.1 (verify!). The feasible solution space of
the problem represents the area in the first quadrant in which all the constraints are
satisfied simuttaneously. In Figure 2.1, any point in or on the boundary of the area
ABCDEF is part of the feasible solution space. All points outside this area are
infeasible.

TORA Moment.

The menu-driven TORA graphical LP modute should prove helpful in reinforcing
your understanding of how the LP constraints are graphed. Select

Linear Programming from the MAIN menu . After inputting the model,

select Solve = Graphical from the SOLVE/MODIFY menu. In the output
screen, you will be able to experiment interactively with graphing the constraints one
at a time, 30 vou can see how each constraint affects the solution space.

Step 2.

Derermination of the QOptimum Solution:

The feasible space in Figure 2.1 is delineated by the line segments joining the points
A, B, C, D, E,and F. Any point within or on the boundary of the space ABCDEF is
feasible. Because the feasible space ABCDEF consists of an infinite number of
points, we need a systematic procedure to identify the optimum solution.

The deterruination of the optimum sotution requires identifying the direction in
which the profit function z = 5x; + 4x; increases (recall that we are maximizing z).
We can do so by assigning arbitrary increasing values to z. For example, using z = 10
and z = 15 would be equivalent to graphing the two lines 5x; + 4x; = 10 and
5x, + 4x, = 15. Thus, the direction of increase in z is as shown Figure 2.2. The opti-
mum solution occurs at C, which is the point in the solution space beyond which any
further increase will put z ouiside the boundaries of ABCDEF.

The values of x, and x; associated with the optimum point C are determined by
solving the equations associated with lines {1} and (2)—that is,

6x, + 4X2 = 24
X, +2x =6
The solutionis x, = 3and x, = 1.5withz = 5 X 3 + 4 X 1.5 = 21. This calls for a

daily product mix of 3 tons of exterior paint and 1.5 tons of interior paint. The associ-
ated daily profit is $21,000.
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(Maximize z = 5x; + 4x3)

Optimum: x; =3 tons
X, = 1.5 tons
z = $21,000

611 + 4125 24

~ Xy

FIGURE 2.2
Optimum solution of the Reddy Mikks model

An important characteristic of the optimum LP solution is that it is always asso-
ciated with a comer poiat of the solution space (where two lines intersect). This is
true even if the objective function happens to be paralle! to a constraint. For exam-
ple, if the objective function is z = 6x; + 4x,, which is parallel to constraint 1, we can
always say that the optimuin occurs at either corner point B or corner point C. Actu-
ally any point on the line segment BC will be an alrernative optimum (see also Exam-
ple 3.5-2), but the important observation here is that the line segment BC is totally
defined by the corner poinis B and C.

TORA Moment.

You can use TORA interactively to see that the optimum is always associated with a
corner point. From the output screen, you can click Wew!Moﬁlﬁl Tipu _‘ s
modify the objective coefficients and re-solve the problem graphically. You may use the
following objective functions to test the proposed idea:

(a) z=5x; + x,
(b) z=>5x +4x,
(©) z=x %+ 3x
d) z=—x +2x
() z=-2x;+ x;
N z2=-x-x

o



L

2.2 Graphical LP Solution 19

The observation that the LP optimuim is always associated with a corner point means that
the optimum solution can be found simply by enumerating all the corner points as the following
table shows:

Corner point {x1, x3} z
A 0,0 0
B (4,0) 20
C (3,1.5) 21 (OPTIMUM)
D (2.2) 18
E (1,2 13
F (1) 4

As the number of constraints and variables increases, the number of corner points also in-
creases, and the proposed enumeration procedure becomes less tractable computationally. Nev-
ertheiess, the idea shows that, from the standpoint of determining the LP optimum, the
solution space ABCDEF with its infinite number of solutions can, in fact, be replaced with a
finite number of promising solution points—namely, the corner points, 4, B, C, D, E, and F. This
result is key for the development of the general algebraic algorithm, called the simplex
method, which we will study in Chapter 3.

PROBLEM SET 2.2A

1. Determige the feasible space for each of the following independent constraints, given
that x;, x; = (.

*(a) —3x; + x; =6

) x;~2x =5

(¢) 2x; —~ 3xy, = 12.
*d) z) —x; =0

(e} —x;+x =0

2. Identify the direction of increase in z in each of the following cascs:

*(a) Maximize z = x| — x3.

(b) Maximize z = —5x; — 6x».

(¢) Maximize 7 = —x| + 2x,.
#*(d) Maximize z = =3x, + x;.

3. Determine the solution space and the optimum solution of the Reddy Mikks model for
each of the following independent changes:

(a) The maximum daily demand for exterior paint is at most 2.5 tons.
(b} The daily demand for interior paint is at least 2 tons.

(¢} The daily demand for interior paint is exactly 1 ton higher than that for exterior
paint.

(d) The daily availability of raw material M1 is at least 24 tons.

() The daily availability of raw material M1 1s at least 24 tons, and the daily demand for
interior paint exceeds that for exterior paint by at least 1 ton.
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4. A company Lhat operates 10 hours a day manufactures two products on three sequential

8.

*7.

10.

processes. The following table summarizes the data of the problem:

Minutes per unit

Product Process ! Process 2 Process 3 Unit profit
1 10 6 8 52
2 5 20 10 $3

Determine the optimal mix of the two prodﬁcts.

A company produces two products, A and B. The sales volume for A is at least 80% of
the total sales of both A and B. However, the company cannot sell more than 100 units of
A per day. Both products use one raw material, of which the maximum daily availability
ts 240 1b. The usage rates of the raw material are 2 b per unit of A and 4 Ib per unit of B,
The profit units for A and B are $20 and $50, respectively. Determine the optimal prod-
uct mix for the company.

Alumco manufactures aluminum sheets and aluminum bars. The maximum production
capacity is estimated at either 800 sheets or 600 bars per day. The maximum daily de-
mand is 550 sheets and 580 bars. The profit per ton is $40 per sheet and $35 per bar. De-
termine the optimal datly production mix.

An individual wishes to invest $5000 over the next year in two types of investment: Invest-
ment A yields 5% and investment B yields §%. Market research recommends an alloca-
tion of at least 25% in A and at most 50% in B. Moreover, investment in A should be at
least half the investment in B. How should the fund be allocated to the two investments?

. The Continuing Education Division at the Ozark Community College offers a total of

30 courses each semester. The courses offered are usually of two types: practical, such

as woodworking, word processing, and car maintenance; and humanistic, such as histo-

ry, music, and fire arts. To satisfy the demands of the cornmunity, at least 10 courses of

each type must be offered each semester. The division estimates that the revenues of

offering practical and humanistic courses are approximately $1500 and $1000 per

course, respeciively.

(a) Devise an optimal course offering for the college.

(b) Show that the worth per additional course is $1500, which is the same as the revenue
per practical course. What does this result mean in terms of offering additional
coutrses?

ChemLabs uses raw materials / and {f to produce two domestic cleaning solutions, A
and B.The daily availabilities of raw materials [ and I are 150 and 145 units, respectively.
One unit of solution 4 consumes .5 unit of raw material 7 and .6 unit of raw material I/,
and one unit of solution B uses .5 unit of raw material I and .4 unit of raw material /1. The
profits per unit of solutions A and 8 are $8 and $190, respectively. The daily demand for
solution A lies between 30 and 150 units, and that for solution B between 40 and 200
units. Find the optimal production amounts of A4 and B.

In the Ma-and-Pa grocery store, shelf space is limited and must be used effectively to in-
crease profit. Two cereal iteras, Grano and Wheatie, compete for a total shelf space of

60 fc”. A box of Grano occupies .2 ft? and a box of Wheatie needs .4 ft>. The maximum
daily demands of Grano and Wheatie are 200 and 120 boxes, respectively. A box of
Grano nets $1.00 in profit and a box of Wheatie $1.35. Ma-and-Pa thinks that because the
unit profit of Wheatie is 35% higher than that of Grano, Wheatie shouid be allocated
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35% more space than Grano, which amounts to allocating about 37% to Wheatie and
43% to Grano. What do you think?

Jack is an aspiring freshman at Ulern University. He realizes that “all work and no play
make Jack a dull boy.” As a result, Jack wants to apportion his available time of about
10 hours a day between work and play. He estimates that play is {wice as much fun as
work. He also wants to study at least as much as he plays. However, Jack realizes that if
he is going to get all his homework assignments done, he cannot play more than 4
hours a day. How should Jack allocate his time to maximize his pleasure from both
work and play?

Wild West produces two types of cowboy hats. A type 1 hat requires twice as much labor
time as a type 2. If the all available labor time is dedicated to Type 2 alone, the company
can produce a total of 400 Type 2 hats a day. The respective market limits for the two
types are 150 and 200 hats per day. The profit is §8 per Type 1 hat and 35 per Type 2 hat.
Determine the number of hats of each type that would maximize profit.

Show & Sell can adverttise its products on local radio and television {TV). The advertising
budget is limited to $10,000 a month. Each minute of radio advertising costs $15 and each
minuie of TV commercials 3300. Show & Sell likes to advertise on radio at least (wice as
much as on TV. In the meantime, it is not practical to use more than 400 minuies of radio
advertising a month. From past experience, advertising on TV is estimated to be 25 times
as effective as on radio. Determine the optimum allocation of the budget to radio and TV
advertising.

Wyoming Electric Coop owns a steam-turbine power-generating plant. Because
Wyoming is rich in coal deposits, the plant generates its steam from coal. This, however,
may resitll in emission that does not meet the Environmentai Protection Agency stan-
dards. EPA regulations limit sulfur dioxide discharge to 2000 parts per million per ton of
coal burned and smoke discharge from the plant stacks to 20 [b per hour. The Coop re-
ceves two grades of pulverized coal, Cl and C2, for use in the steam ptant. The two
grades are vsually mixed together before burning. For simplicity, it can be assumed thiat
the amount of sulfur pollutant discharged (in parts per million) is a weighted average of
the proportion of each grade used in the mixture. The following data are based on con-
sumption of 1 ton per hour of each of the two coal grades.

Sullur discharge Smaoke discharge Steam generated
Coal grade in parts per million i Ib per hour in b per hour
Cl 1800 2.1 12,000
c2 2100 R 9.000

(a) Determine the optimal ratio for mixing the two coal grades.

(b) Determine the effect of relaxing the smoke discharge limit by 1 1b on the amount of
generated steam per hour.
Top Toys is planning a new radio and TV advertising campaign. A radio commercial costs
$300 and a TV ad costs $2000. A total budget of $20,000 s allocated to the campaign.
However, to ensure that each medium will have at least one radio commercial and one
TV ad, the most that can be allocated to either medium cannot exceed 80% of the total
budget. It is estimated that the first radio commercial will reach 5000 people, with each
additional commerciai reaching only 2000 new ones. For TV, the first ad will reach 4500
people and each additional ad an additional 3000. How should the budgeted amount be
allocated between radio and TV?
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16. The Burroughs Garment Company manufactures men’s shirts and women’s blouses for

17.

*18.

19.

Walmark Discount Stores. Walmark will accept all the production supplied by Burroughs.
The production process includes cutting, sewing, and packaging. Burroughs employs 25
workers in the cutting department, 35 in the sewing department, and 5 in the packaging
department. The factory works one 8-hour shift, 5 days 2 week. The following table gives
the time requirements and profits per unit for the two garments:

Minutes per unit

Garment Cutting Sewing Packaging Unit profit (3)
Shirts 20 70 12 8
Blouses 60 60 4 12

Determine the optimal weekly production schedule for Burroughs.

A furniture company manufactures desks and chairs. The sawing department cuts the
lumber for both products, which is then sent to separate assembly departments. Assem-
bled items are sent for finishing to the painting department. The daily capacity of the
sawing department is 200 chairs or 80 desks. The chair assembly department can produce
120 chairs daily and the desk assembly department 60 desks daily. The paint department
has a daily capacity of either 150 chairs or 110 desks. Given that the profit per chair is $50
and that of a desk is $100, determine the optimal production mix for the company.

An assembly line consisting of three consecutive stations produces two radio models: HiFi-
1 and HiFi-2. The following table provides the assembly times for the three workstations.

Minuies per unit

Workstation HiFi-1 HiFi-2
1 6 4
2 5 5
3 4 6

The daily maintenance for stations 1, 2, and 3 consumes 10%, 14%, and 12%, respective-
ly, of the maxiroum 480 minutes available for each station each day. Determine the opti-
mal product mix that will minimize the idle (or unused} times in the three workstations.

TORA Experiment. Enter the following LP into TORA and select the graphic solution
mode to reveal the LP graphic screen.

Minimize z = 3x; + 8x;

subject to
x + x= 8
2, - 3x;,= 0
x; + 2x, =30
3 - x;z2 0
X = 10
Xy = 9
Xy, Xp = 0

Next, on a sheet of paper, graph and scale the x,- and x;-axes for the problem (you may
also click Print Graph on the top of the right window to obtain a ready-1o-use scaled
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sheet). Now, graph a constraint manually on the prepared sheet, then click it on the left
window of the screen to check your answer. Repeat the same for each constraint and
then terminate the procedure with a graph of the objective function. The suggested
process is designed to test and reinforce your understanding of the graphical LP solution
through immediate feedback from TORA.

20. TORA Experiment. Consider the following LP model:

Maximize z = Sx) + 4x,

subject to
6x; + 4xy, = 24
6X| + 3XZ = 225
n+ x= 5
x+2xnp= 6
—xtx=s 1
Xy = 2
Xnxx 0

In LP, a constraint is said to be redundant if 11s removal from the model leaves the feasi-
ble solution space unchanged. Use the graphical facility of TOR A to identify the redun-
dant constraints, then show that their removal (simply by not praphing them) does not
affect the solution space or the optimal solution.

21. TORA Experiment. In the Reddy Mikks model, use TORA to show that the removal of
the raw material constraints (constraints 1 and 2) would result in an unbounded solution
space. What can be said in this case about the optimal solution of the model?

22. TORA Experiment. In the Reddy Mikks model, suppose that the following constraint is
added to the problem.

Xz = 3
Use TORA to show that the resulting model has conflicting constraints that cannot be
satisfied simultaneocusly and hence it has ro feasible solution.

2.2.2 Solution of a Minimization Model

Example 2.2-2 (Diet Problem)

Ozark Farms uses at least 800 1b of special feed daily. The special feed is a mixture of corn and
soybean meal with the following compositions:

1b per 1b of feedstuff

Feedstuff Protein Fiber Cost ($/1b)
Corn 09 02 30
Soybean meal .60 .06 80

The dietary requirements of the special feed are at least 30% protein and at most 5% fiber.
Ozark Farms wishes to determine the daily minimum-cost feed mix.

Because the feed mix consists of corn and soybean meal, the decision variables of the model
are defined as

x; = b of corn in the daily mix
x, = Ib of soybean meal in the daily mix
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The objective function seeks to minimize the total daily cost (in dollars) of the feed mix and is
thus expressed as

Minimize z = 3x; + Sx;

The constraints of the model reflect the daily amount needed and the dietary requirements,
Because Ozark Farms needs at least 800 1b of feed a day, the associated coustraint can be ex-
pressed as

x, + x; = 800

As for the protein dietary requirement constraint, the amount of protein included in x; 1b of
corn and x; lb of soybean meal is {.09x, + .6x,} lb. This quantity should equal at least 30% of
the total feed mix (x, + x;) Ib—that is,

09x, + by = .3(I1 + xg)
In a similar manner, the fiber requirement of at most 5% is constructed as
.Ole + .06.(2 = .05(x] + .xz}

The constraints are simplified by moving the terms in x, and x; to the Jeft-hand side of each
inequality, leaving only a constant on the right-hand side. The compiete mode] thus becomes

minimize z = 3x; + 9x

subject to

x +  xy= 800
21x) — 30x, =0
03x, - Ml =0

X, % =0

Figure 2.3 provides the graphical solution of the model. Unlike those of the Reddy Mikks
model (Example 2.2-1), the second and third constraints pass through the origin. To plot the
associated straight lines, we need one additional point, which can be obtained by assigning a
value to one of the variables and then solving for the other variable. For example, in the sec-
ond constraint, x; = 200 will yield .21 X 200 — 3x; = 0, or x; = 140. This means that the
straight line .21x, — .3x, = 0 passes through (0, 0} and (200, 140). Note also that (0, 0) cannot be
used as a reference point for constraints 2 and 3, because both lines pass through the origin. In-
stead, any other point [e.g., (100, 0) or (0, 100}] can be used for that purpose.

Solution:

Because the present model seeks the minimization of the objective function, we need to reduce
the value of z as much as possible in the direction shown in Figure 2.3. The optimurm solution is the
intersection of the two lines x; + x; = 800 and .21x| —.3x, = 0, which yields x;, = 470.59 Ib and
x; = 329.41 |b. The associated minimum cost of the feed mixis z = .3 X 470.59 + .9 X 32642 =
$437.65 per day.

Remarks. We need to take note of the way the constraints of the problem are constructed. Be-
cause the model is minimizing the total cost, one may argue that the solution will seek exactly
8OO tons of feed. Indeed, this is what the optimum solution given above does. Does this mean
then that the first constraint can be deleted altogether simply by including the amount 800 tons
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1500
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:' Optimum: x; = 470.61b

5 X, = 329.4 b
% 7 = $437.64
)
] % ] ]
0 500 N 1000 1500 B

FIGURE 2.3
Graphical solution of the diet model

in the remaining constraints? To find the answer, we state the new protein and fiber constraints
as

09x, + 6x, = 3 X 800
02x; + 06x, = 05 X 800
or
09x, + 6xy = 240
Q2x; + 06xy = 40

The new formutation yields the solution x; = 0, and x, = 4001b (verify with TORAI!), which
does not satisfy the implied requirement for 800 Ib of feed. This means that the constraint
x; + x; = 800 must be used explicitly and that the protein and fiber constraints must remain ex-
acily as given originally. .

Along the same [ine of reasoning, one may be tempted to replace x; + x; 2 800 with
x; + x; = 800. In the present example, the two constraints yield the same answer. But in gen-
eral this may not be the case. For example, suppose that the daily mix must include at least
500 [b of corn. In this case, the optimum solution will call for using 500 ib of corn and 350 ib
of soybean {verify with TORA!), which is equivalent to a daily feed mix of 500 + 350 = 850 lb.
Imposing the equality constraint a priori will lead to the conclusion that the problem has no
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feasible solution (verify with TORA!). On the other hand, the use of the inequality is inclusive
of the equality case, and hence its use does not prevent the model from producing exactly 800 b
of feed mix, should the remaining constraints altow it. The conclusion is that we should not “pre-
guess” the solution by imposing the additional equality restriction, and we should always use in-
equalities unless the situation explicitly stipulates the use of equalities.

PROBLEM SET 2.28

L. Identify the direction of decrease in z in each of the following cases:
*(a) Minimize z = 4x; — 2x;.
(b) Minimize z = —3x; + x,.
(¢) Minimize z = —x, ~ 2x,.
2. For the diet model, suppose that the daily availability of corn is limited to 450 Ib. Identify
the new solution space, and determine the new optimum solution.

3. For the diet model, what type of optimurn solution would the model yield if the feed mix
should not exceed 800 Ib a day? Does the sclution make sense?

4. John must work at ieast 20 hours a week to supplement his income while attending
school. He has the opportunity to work in two retail stores. In store 1, he can work be-
tween 5 and 12 hours a week, and in store 2 he is allowed between 6 and 10 hours. Both
stores pay the same hourly wage. In deciding how many hours to work in ach store, John
wants to base his decision on work stress. Based on interviews with present employees,
John estimates that, on an ascending scale of 1 to 10, the stress factors are 8 and 6 at
stores 1 and 2, respectively. Because stress mounts by the hour, he assumes that the total
stress for each store at the end of the week is proportional to the number of hours he
works in the store. How many hours should Joha work in ¢ach store?

*5. OilCo is building a refinery to produce four products: diesel, gasoline, lubricants, and jet
fuel. The minimurm demand (in bbl/day) for each of these products is 14,000, 30,000,
10,000, and 8,000, respectively. Iran and Dubai are under contract to ship crude to QilCo.
Because of the production quotas specified by OPEC (Organization of Petroleum Ex-
porting Countries) the new refinery can receive at least 40% of its crude from Iran and
the remaining amount from Dubai. OilCo predicts that the demand and crude oif quotas
will remain steady over the next ten years.

The specifications of the two crude oils lead to different product mixes: One barrel
of Iran crude yields .2 bbl of diesel, .25 bbl of gasoline, .1 bbl of lubricant, and .15 bbl of
Jet fuel. The corresponding yields from Dubai crude are .1, .6, .15, and .1, respectively.
OilCo needs to determine the minimum capacity of the refinery (in bbl/ day).

6. Day Trader wants to invest a sum of money that would generate an annual yield of at
least $10,000. Two stock groups are available: blue chips and high tech, with average an-
nual yields of 10% and 25%, respectively. Though high-tech stocks provide higher yield,
they are more risky, and Trader wants to limit the amount invested in these stocks to no
more than 60% of the total investment, What is the minimum amount Trader should in-
vest in each stock group to accomplish the investment goal? -

*7. An industrial recycling center uses two scrap aluminum metats, A and B, to produce a
special alloy. Scrap A contains 6% aluminum, 3% silicon, and 4% carbon. Scrap B has
3% aluminum, 6% silicon, and 3% carbon. The costs per ton for scraps A and B are $100
and $80, respectively. The specifications of the special alloy require that (1) the aluminum
content must be at least 3% and at mast 6%, (2) the silicon content must lie between 3%
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and 5%, and (3) the carbon content musi be between 3% and 7%. Deterine the opti-
mum mix of the scraps that should be used in producing 1000 tons of the alloy.

8. TORA Experiment. Consider the Diet Model and let the objective function be given as
Minimize z = 8x; + .8x,

Use TORA to show that the optimum solution is associated with two distinct corner
points and that both points yield the same objective value. In this case, the problem is
said to have alternative optima. Explain the conditions leading to this situation and show
that, in effect, the problem has an infinite number of alternative optima, then provide a
formula for determining all such solutions.

SELECTED LP APPLICATIONS

This section presents realistic P models in which the definttion of the variables
and the construction of the objective function and constraints are not as straight-
forward as in the case of the two-variable model. The areas covered by these applh-
cations include the following:

1. Urban planning.

2. Currency arbitrage.

3. Investment.

4. Production planning and inventory control.
5. Blending and oil refining.

6. Manpower planning.

Each model is fully developed and its opttmum solution is analyzed and interpreted.

Urban Planning’

Urban planning deals with three general areas: (1) building new housing develop-
ments, (2) upgrading inner-city deteriorating housing and recreational areas, and (3)
planning public facilities (such as schools and airports). The constraints associated with
these projects are both economic (land, construction, financing) and social (schools,
parks, income level}. The objectives in urban planning vary. In new housing develop-
ments, profit is usually the motive for undertaking the project. In the remaining two
categories, the goals involve social, political, economic, and cultural considerations. In-
deéd, in a publicized case in 2004, the mayor of a city in Ohio wanted t¢ condemn an
old area of the city to make way for a luxury housing development. The motive was to
increase tax collection to help alleviate budget shortages. The example presented in
this section is fashioned after the Ohio case.

"This section is based on Laidiaw (1972).
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Example 2.3-1 (Urban Renewal Modef)

The city of Erstville is faced with a severe budget shortage. Seeking a long-term solution, the city
council votes to improve the tax base by condemning an inaer-city housing area and replacing it
with a modern developmenl.

The project involves two phases: {1) demolishing substandard houses to provide land for
the new development, and (2) building the new development. The following is a summary of the
situation.

1. As many as 300 substandard houses can be demolished. Each house occupies a :25-acre
lot. The cost of demolishing a condemned houvse is $2000.

2. Lot sizes for new single-, double-, triple-, and quadruple-family homes (units) are .18, .28,
4, and .5 acre, respectively. Streets, open space, and utility easements account for 15% of
available acreage.

3. In the new development the triple and quadruple units account for at least 25% of the
total. Single units must be at Jeast 20% of all units and double units at least 10%.

4. The tax levied per unit for single, double, triple, and quadruple units is $1,000, $1,900,
$2,700, and $3,400, respectively.

5. The construction cost per unit for single-, double-, triple-, and quadruple- family homes is
$50,000, $70,000, $130,000, and $160,000, respectively. Financing through a local bank can
amount to a maximum of $15 million.

How many units of each type should be constructed to maximize tax coilection?

Mathematical Model: Besides determining the number of units to be constructed of each type
of housing, we also need to decide how many houses must be demolished to make room for the
new development. Thus, the variables of the problem can be defined as follows:

x; = Number of units of single-family homes

X3 = Number of units of double-family homes

x3 = Number of units of triple-family homes

x4 = Number of units of quadruple-family homes

xs = Number of old homes to be demolished

The objective is to maximize total tax collection frorn‘ail four types of homes—that is,
Maximuze z = 1000x, + 1900x; + 2700x; + 3400,

The first constraint of the problem deals with land avaitability.

(Acreagc used for new) - (Nel available)

home construction acreage

From the data of the problem we have

Acreage needed for new homes = 18x, + 28x, + 4xy + 5x4

peren e -
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To determine the available acreage, each demolished home occupies a .25-acre lot, thus netting
.25xs acres. Allowing for 15% open space, streets, and easements, the net acreage available is
B5(.25x5) = .2125xs5. The resulting constraint is

A8xy + 28x; + 4xy + Sxy = 2125x5
or

A8x; + 28x; + dxy + Sxy— 2125x5 =0
The number of demolished homes cannot exceed 300, which translates to
x5 < 300
Next we add the constraints limiting the number of units of each home type.
(Number of single units) = (20% of all units)

(Number of double units) = (10% of all units}

(Number of triple and quadruple units} = (25% of all units)
These constraints translate mathematically to
o= 2x) +xy + ox3 + xy)
X 2 1{xy + xy + x3 + xy)
X3+ x4 = 25{x; + xy + x5+ x4)

The only remaining consiraint deals with keeping the demolishition/construction cost within the
allowable budget—thalt is,

{Construction and demolition cost) = (Available budget)
Expressing ail the costs in thousands of doilars, we get
(SOX] + 70.(2 + 130I3 + 160X4) + 2X5 = 15000

The complete model thus becomes

Maximize z = 1000x; + 1900x, + 2700x; + 3400x,

subject to

A8x; + 28xy + Axy + Sxp — 212xs =0

xs = 300
—8x) + 2x, + 2x3 + 2x, =0
dxp = 9xp + Ax; + 1xy =0
25xy + 25x; — 15x5 — 75xy =

50x, + 70xy + 130x; + 1601 + 2Zxs =< 15000

X1, X3, X3, X4, L5 = 0
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Solution:

The optimum solution (using file amplEX2.3-1.txt or solverEx2.3-1.xls) is:

Total tax collection = z = $343,965

Number of single homes = x; = 35.83 = 36 units
Number of double homes = x; = 98.53 = 99 units
Number of triple homes = x3 = 44.79 = 45 units
Number of quadruple homes = x4 = 0 units

Number of homes demolished = x5 = 244.49 =~ 245 units

Remarks. Linear programming does not guarantee an integer solution automatically, and this
is the reason for rounding the continuous values to the closest integer. The rounded solution calis
for constructing 180 {= 36 + 99 + 45) units and demolishing 245 old homes, which yields
$345,600 in taxes. Keep in mind, however, that, in general, the rounded solution may not be fea-
sible. In fact, the current rounded solution violates the budget constraint by $70,000 (verify!). In-
terestingly, the true optunum integer solution {using the algorithmas in Chapter 9) is
x =36, % = 98, x3 = 45, x5 = 0, and x5 = 245 with z = $343,700. Carefully note that the
rounded solution yields a better objective value, which appears contradictory. The reason is that
the rounded solution calls for producing an extra double home, which is feasible only if the bud-
get is increased by $70,000.

PROBLEM SET 2.3A

1. A realtor is developing a rental housing and retail area. The housing area consists of effi-
ciency apartments, duplexes, and single-family homes. Maximum demand by potential
renters is estimated to be 500 efficiency apartments, 300 duplexes, and 250 single-family
homes, but the number of duplexes must equal at least 5% of the pumber of efficiency
apartmeants and single homes. Retatl space is proportionate to the number of home units
at the rates of at least 10 ft2, 15 f1?, and 18 ft* for efficiency, duplex, and single family
units, respectively. However, land availability limits retail space to no more than
10,000 f1°. The monthly rental income is estimated at $600, $750, and $1200 for efficiency-,
duplex-, and single-family units, respectively. The retail space rents for $100/(t>. Determine
the optimal retail space area and the number of family residences.

2. The city council of Fayettevitle is in the process of approving the construction of a new
200,000-ft? convention center. Two sites have been proposed, and both require exercising
the “eminent domain” faw to acquire the property. The following table provides data
about proposed (contiguous) properties in both sites together with the acquisition cost.

Site 1 Site 2

Property Area (1000 %) Cost (1000 $) Area (1000 %) Cost (1000 §)

1 20 1,000 80 2,800
2 50 2,100 60 1,500
3 30 2350 50 2,800

. 4 30 1,850 70 2,500
5 60 2950

Partial acquisition of property is allowed. At least 75% of property 4 must be acquired
if site 1 is selected, and at least 50% of property 3 must be acquired if site 2 is selected.

pre - =
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Although site 1 property is more expensive (on a per i’ basis), the construction cost is
less than at site 2, because the infrastructure at site 1 is in a much better shape. Con-
struction cost is $25 million at site 1 and $27 million at site 2. Which site should be se-
lected, and what properties should be acquired?

A city will undertake five urban renewal housing projects over the next five years. Each

project has a different starting year and a different duration. The following table provides
the basic data of the situation:

Cost Annual income
Year1l TYear2 Year3 Yeard Year5 (million$) (miltion $)
Project 1 Start End 5.0 05
Project 2 Start End 8.0 .07
Project 3 Start End 15.¢ 15
Project 4 Start End 1.2 K17)

Budget (million $) 3.0 6.0 7.0 7.0 7.0

Projects 1 and 4 must be finished completely within their durations. The remaining two pro-
jects can be finished partially within budget limitations, if necessary. However, each project
must be at least 25% completed within its duration. At the end of each year, the completed
section of a project is immediately occupied by tenarts and a proportional amount of in-
come is realized. For example, if 40% of project 1 is completed in year 1 and 60% in year
3, the associated income over the five-year planning horizon is .4 X $50,000

(for year2) + 4 X $50,000 (for year 3} + (4 + .6) x $50,000 (for year 4) +

(.4 + .6) X $50,000 (for year 5) = (4 X 4 + 2 X .6) X $50,000. Determine the opti-
mal schedule for the projects that will maximize the total income over the five-year
horizon. For simplicity, distegard the time value of money.

The city of Fayetteville is embarking on an urban renewal project that wifl include lower-
and middle-ircome 1ow housing, upper-income luxury apartments, and public housing.
The project also includes a public elementary school and retail facilities. The size of the
elementary school (number of classrooms} is proportional to the number of pupils, and
the retail space is proportional to the number of housing units. The following table pro-
vides the pertinent data of the siluation:

Lower Middle Upper  Public  Schoel Retail

income  income income  housing  room unit
Minimum number of units 100 125 75 300 0
Maximum number of units 200 190 260 600 25
Lot size per unit (acre) 05 07 03 025 045 1
Average number of pupils perunit 1.3 12 5 i4
Retail demand per unit (acre) 023 034 {046 023 034
Annual income per unit($) 7000 12,000 20,000 5000 — 15,000

The new school can occupy 2 maximum space of 2 acres at the rate of at most 235 pupils
per roon. The operating annual cost per school room is $10,000. The project will be locat-
ed on a 50-acre vacant property owned by the city. Additionally, the project can make use
of an adjacent property occupied by 200 condemned slum homes. Each condemned home
occupies .25 acre. The cost of buying and demolishing a slum unit is $7000. Open space,
streets, and parking lots consume 15% of total available land.

Develop a linear program to determing the optimum plan for the project.
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5. Realco owns 800 acres of undeveloped land on a scenic lake in the heart of the Ozark
Mountains. In the past, fittle or no regulation was imposed upon new developments
around the lake. The lake shores are now dotted with vacation homes, and septic tanks,
most of them improperly installed, are in extensive use. Qver the years, seepage from the
septic tanks led to severe water pollution. To curb further degradation of the lake, county
officials have approved stringent ordinances applicable to all future developments: (1)
Only single-, double-, and triple-family homes can be constructed, witk single-family
homes accounting for at least 50% of the total. (2) To limit the number of septic tanks,
minimum lot sizes of 2, 3, and 4 acres are required for single-, double-, and triple-family
homes, respectively. (3) Recreation areas of 1 acre each must be established at the rate of
one area per 200 families. (4) To preserve the ecology of the lake, underground water
may not be pumped out for house or garden use. The president of Realco is studying the
possibility of developing the 800-acre property. The new development will include single-,
double-, and triple-family homes. It is estimated that 15% of the acreage will be allocated
to streets and utility easements. Realco estimates the returns from the different housing
units as follows:

Housing unit Single Double Triple

Net return per unit (3) 10,000 12,000 15,000

The cost of connecting water service to the area is proportionate to the number of
units constructed. However, the county charges a minimum of $100,000 for the pro-
ject. Additionally, the expansion of the water system beyoand its present capacity is
limited to 200,000 gallons per day during peak periods. The following data summarize
the water service connection cost as well as the water consumption, assuming an aver-
age size family:

Housing upit Single Double  Triple  Recreation
Water service connection cost per unit (3) 1000 1200 1400 800
Water consumption per unit (gal/day) 400 600 840 450

Develop an optimal plan for Realco.

6. Consider the Realco model of Problem 5. Suppose that an additional 100 acres of land
can be purchased for $450,000, which will increase the total acreage to 900 acres. Is this a
profitable deal for Realco?

Currency Arbitrage’

In today’s global economy, a multinationai company must deal with currencies of the
countries in which it operates. Currency arbitrage, or simultaneous purchase and sale
of currencies in different markets, offers opportunities for advantageous movement of
money from one currency to another. For example, converting £1000 to U.S. dollars in
2001 with an exchange rate of $1.60 to £1 will yield $1600. Another way of making the
conversion is to first change the British pound to Japanese yen and then convert the yen
to US. dollars using the 2001 exchange rates of £1 = ¥175 and $1 = ¥105. The

*This section is based on J. Kornbluth and G. Salkin (1987, Chapter 6).
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(£1,000 X ¥175)
¥105

the advantage of converting the British money first to Japanese yen and then to dol-

lars. This section shows how the arbitrage problem involving many currencies can be

formulated and solved as a linear program.

resulting dollar amount is = §$1,666.67. This example demonstrates

Example 2.3-2 (Currency Arbitrage Mode!)

Suppose that a company has a total of 5 million dollars that can be exchanged for euros (€),
British pounds (£), yen (¥), and Kuwaiti dinars (KD}. Currency dealers set the following limits
on the amount of any single transaction: 5 million dollars, 3 million euros, 3.5 million pounds,
100 million yen, and 2.8 million KDs. The table below provides typical spot exchange rates. The
bottom diagonal rates are the reciprocal of the top diagonal rates. For example, rate{€ — §) =
Yrate($ —€) = 1/.769 = 1.30.

$ € £ ¥ KD
$ 1 769 625 105 342
€ ) 1 813 137 445
£ = 3 1 169 543
¥ = & s t 0032
KD 3 23 35 @7 1

Is it possible to increase the dollar holdings (above the initial $5 miliion) by circulating cur-
rencies through the currency market?

Mathematical Model: The situation starts with $5 million. This amount goes through a number of
conversions to other currencies before ultimately being reconverted to dollars. The problein thus
seeks determining the amount of each conversion that will maximize the total doilar holdings.

For the purpose of developing the model and simplifying the notation, the following nu-
meric code is used to represent the currencies.

Currency 3 € £ ¥ KD

Code 1 2 3 4 5

Define
x; = Amount in currency i converted to currency j,iand j = 1,2,...,5

For example, x;, is the dollar amount converted to euros and xs, 1s the KD amount converted to
dollars. We further define two additional variables representing the input and the output of the
arbitrage problem:

[ = Initial dollar amount (= $5 illion)
y = Final dollar holdings (to be determined from the solution)

Our goal is to determine the maximum final dollar holdings, y, subject to the cusrency flow re-
strictions and the maximum limits allowed for the different transactions.
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X 13 .625.‘ 13 ;
XS5 [
1 3
#) @

FIGURE 2.4

Definition of the input/output variable, x3, between § and £

We start by developing the constraints of the model. Figure 2.4 demonstrates the idea of
converiing dollars to pounds. The dollar amount x,; at originating currency 1 is converted to
.625x; pounds at end currency 3. At the same time, the transacted dollar amount cannot exceed
the limit set by the dealer, x;3 = 5.

To conserve the flow of money from one currency to another, each currency must satisfy the
following input-gcutput equation:

( Total sum available ) _ ( Total sum converted to )

of a currency (input) "~ \other currencies (output)

1. Dollar (i = 1}:

Total available dollars = Tnitial dollar amount +
doltar amount from other currencies

I+ (E=H + (=38 +(¥>8) + (KD—$)

il

] ! | 1
I+ mel + Ex:n + Tﬁxdl + ﬁxsl

Total distributed doliars = Final dollar holdings +
dollar arnount to other currencies

=y +(§—=€+ (=L +(§—Y + (3§ —=KD)
=yt xptxstoxggtoxgs
Given [ = 5, the dollar conslraint thus becomes
toxg s+ X+ x5 — (Fgam + g F rmta f 3gts) =S
Y 12 13 14 15 769 X21 62531 0544t T 33 %51

2. Euro (i = 2}

Total available euros = (§ —€) + (£ —€) + (¥—€) + (KD —€)

1 L 1
769x,, + 73532 + TwXaz v 33 X5

Total distributed euros = (E— §) + (€2 £} + (€—¥) + (E—=KD)
=x2|+x23+x24+x25
Thus, the constraint is

1 1 1 —
X2 + A + Xq4 + Xo5 — (.7691712 + "8-1_3.‘532 + 137 X42 + 'ESXSZ) = 0

e
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3. Pound{i = 3):
Total available pounds = (§ = £) + (E— &) + (¥— £} + (KD — £}
= .625.1’]3 + .813X23 =+ %143 + %.‘»%3
Total distributed pounds = (£ -3} + (£—€) + (£—¥) + (£E—KD)
= X3t Xap F Xzt oxs
Thus, the constraint is
X3p F Xag + x3q + X35 — 625x3 + 813)623 + l—é-.jx43 + ﬁXﬂ =0
4. Yen (i = 4):
Total available yen = (§ = ¥) + (E—¥) + (£—=¥) + (KD —Y¥)
= 105xy + 137xp) + 169254 + 25 %54

Total distributed yen = (¥ = $) + (X =€) + (¥—4) + (¥—=KD)
= Xq h X X s
Thus, the constraint is
Xa1 + Xaz + Xa3 + Xas — (1051’14 + 13?x24 + 169x34 + ﬁx“) = 0

5. KD (i = 5):

Total available KDs

(KD—3) + (KD—€) + (KD—f) + (KD—Y¥)
.34ZX15 + .445):25 + .543135 + .0032X45

Total distributed KDs

Il

(§ > KD) + (€ > KD) + (E—KD) + (¥—KD)

X5t Xsp b xgy T+ oxsy

Thus, the constraint is

Xsq + Xz53 + Xs3 + Xgq — (.342x|5 + .4454!25 + .543X35 + .0032.'-(45) =0

35

The only remaining constraints are the transaction limits, which are 5 million dollars, 3 mil-
lion euros, 3.5 million pounds, 100 million yen, and 2.8 million KDs. These can be translated as

x;=5,j =23,4,5
Xy =3,) =13,45
Xy =35 =1,2,4,5
Xy =100,/ =1,2,3,5

x5; =28, =1,2,3,4
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The complete model is now given as

Maximize z = y

subject to
y+xztxat Xt oas— (J—l(s—gxn + 3;—5x3l + ;é;gxdl + fﬁxﬂ) =35
X3 T X3+ Xgq + Xy (.769x,2 + ﬁxn + Ilﬁxﬂ + #xsz) =0
Xy + Xy ¥ Xz + xa5 — (625x)3 + Bl3xy + goxg + 33ks) =0
Xg) t Xgo F x4yt Xy - (1()5):,.1 + 137x34 + 169344 + ‘{—K,13—2x54) =0
X5 + Xgp + x53 + xgq — (342115 + .445x3¢ + .543x35 + .0032x45) = 0
xp<35,j =2,345
x; =3, =13,45
x3; =35, =1,2,4,5
xe; = 100,7=1,2,3,5
X = 28,j =1,2,3,4
Xy = 0, foratliand j
Solution:

The optimum solution (using {ile amplEx2.3-2.txt or solverEx2.3-2.x1s) is:

Solution Interpretation

y = 5.09032 Fina! holdings = $5,090,320.
Net dollar gain = $90,320, which
represents a 1.8064% rale of return

X2 = 1.46206 Buy $1,462,060 worth of euros

X5 = Buy §5,000,000 worth of KD
X;5=3 Buy €3,000,000 worth of KD

xyy =35 Buy £3,500,000 worth of dollars
X3y = 0.931495 Buy £931,495 worth of euros

xq = 100 Buy ¥100,000,000 worth of doliars
x5 = 100 Buy ¥100,000,000 worth of euros
x4 = 100 Buy ¥100,000,000 worth of pounds
X33 = 2.085 Buy KD2,085,000 worth of pounds
X5 = 96 Buy KD960,000 worth of yen

Remarks. At first it may appear that the solution is nonsensical because it calls for using
x12 + x5 = 1.46200 + 5 = 6.40200, or $6,462,060 to buy euros and KDs when the initial dollar
amount is only $5,000,000. Where do the extra dollars come from? What happens in practice is
that the given solution is submitted to the currency dealer as ore order, meaning we do not wait
until we accumulate enough currency of a certain type before making a buy. In the end, the net
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result of all these transactions is a net cost of $5,000,000 to the investor. This can be seen by sum-
ming up all the dollar transactions in the solution:

= L 3 A 1
[ = y + X2 + X3 t+ xyq + X115 — (,769'{21 + 625 Y31 + 105 X4t + _342x51)

= 5.09032 + 146206 + 5 ~ (3 + 1) _ 5

Notice that x,;, X3, Xq; and x5, are in euro, pound, yen, and KD, respectively, and hence must be
converted (o dollars.

PROBLEM SET 2.3B

1. Modily the arbitrage model 10 account for a commission that amoeunts to .1% of any cur-
rency buy. Assume that the commission does not affect the circulating funds and that it is
collected after the entire order is execuied. How does the solution compare with that of
the original model?

*2. Suppose that the company is willing to convert the initial $5 million to any other curren-
cy that will provide the highest rate of return, Modify the original mode! to determine
which currency is the best.

3. Suppose the initial amount / = §7 million and that the company wants to convert it opti-
mally to a combination of euros, pounds, and yen. The final mix may not include more
than €2 million, £3 million, and ¥200 mitlion. Modify the original model to determine the
optimal buying mix of the three currencies.

4. Suppose that the company wishes to buy $6 million. The transaction limits for different
currencies are the same as in the original problem. Devise a buying schedule for this trans-
aclion, given that mix may not include more than €3 million, £2 million, and KD2 smallion.

5. Suppose that the company has $2 million, €5 million, £4 million. Devise 2 buy-sell order
that will improve the overall holdings converted to yen.

Investment

Today's investors are presented with multitudes of investment opportunities. Exam-
ples of investment problems are capital budgeting for projects, bond investment strate-
gy, stock portfolio selection, and establishment of bank loan policy. In many of these
situations, linear programming can be used to select the optimal mix of opportunities
that will maximize return while meeting the invesiment conditions set by the investor.

Exampie 2.3-3 (Loan Policy Model)

Thriftem Bank is in the process of devising a lean policy that involves a maximum of $12 million.
The following tabie provides the pertinent data about available types of loans.

Type of loan Interest rate Bad-debl ratic
Personal 140 10
Car 130 07
Home J20 03
Farm 125 05
Commercial 100 2

Bad debts are unrecoverable and produce no interest revenue,
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Competition with other financial institutions requires that the bank allocate at least 40% of
the funds to farm and commercial Joans. To assist the housing industry in the region, home loans
must equal at least 50% of the personal, car, and kome loans. The bank also has a stated policy of
not allowing the overall raiio of bad debts on all loans to exceed 4%.

Mathematical Model: The situation seeks to determine the amount of loan in each category,
thus leading to the following definitions of the variables:

x; = personal Joans (in millions of doliars}

X3 = car loans

X3 = home loans

x4 = farm loans

Xxs = commercial ioans

The objective of the Thriftem Bank is to maximize its net return, the difference between interest
revenue and lost bad debts. The interest revenue is accrued only on loans in geod standing. Thus,
because 10% of personal loans are lost to bad debt, the bank will receive interest on only 90% of
the loan—that is, it will receive 14% interest on .9x,; of the original loan x,. The same reasoning
applies to the remaining four types of loans Thus,

Total interest = .14(.9x;) + .13(.93x,) + 12(.97x3) + .125(.95x;) + .1(.98xs)
.126.‘(| + 1209X‘2 + .1164):3 + 1181"5.(4 + .OQSIS

We also have

Bad debt = 1x, + .07x5 + .03x3 + 05x, + .02x;
The objective function is thus expressed as |

Maximize z = Tota} interest—Bad debt

(.126x, ¥ 1209x, + .1164x; + .11875x, + 098xs)
= (lxy + .07x; + .03x3 + 0524 + 02x5)

026x, + .0509x; + .0864x; + .06875x, + 0785

The problem has five constraints:

1. Total funds should not exceed $12 (million):
X+ X+ xg+ox o= 12
2. Farm and commercial loans equal at least 40% of all loans:
Xy X5 = A(x) + xp + X3+ x5+ x5)
or
' Ax + 4xy + Axy — bxg — bxs =90
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3. Home loans should equal at lenst 50% of personal, car, and home loans:

x3 2 5(x, + X3 + x3)
or
Sxyp 4+ 5x - Sx3 50

4, Bad debts should not exceed 4% of all loans:
dxy + 07x; 4 03x3 + 05x5 + 02x5 = 04(x + xp + x5 + x4 + x5)

or
06x; + .03x; — 0lxy + Olxs — 02x5 <0

5. Nonnegativity:
x120x=0,x,=0, x4 =0, x5 =

A subtle assumption in the preceding formulation is that all loans are issued at approxi-
mately the same time. This assurnption allows us 1o ignore differences in the time value of the
funds allocated to the different loans.

Solution:
The optimal solution is

7=29948, x; =0, x5, =0,x3=72,x,=0,x; =438
Remarks.

1. You may be wondering why we did not define the right-hand side of the second constraint
as .4 X 12 instead of .4(x; + x, + x5 + x4 + x5). After all, it seems logical that the bank
would want to loan out all $12 {million). The answer is that the second usage does not “rob”
the model of this possibility. If the optimum solution needs all $12 (million}, the given con-
straint will atlow it. But there are iwo important reasons why you should not use .4 X 12:
(1) If other constraints in the medel are such that all $12 (million)} cannot be used (for ex-
ample, the bank may set caps on the different loans), then the choice 4 X 12 could lead to
an infeasible or incorrect solution. (2) If you want to experiment with the effect of changing
available funds (say from $12 to $13 million) on the optimum solution, there is a real
chance that you may forget to change .4 X 12 to .4 X 13, ia which case the solution you get
will not be correct. A similar reasoning applies to the left-hand side of the fourth constraint.

2. The optimal solution calls for allocating all $12 million: $7.2 million to kome leans and
$4.8 million to commercial loans. The remaining categories receive none. The return on the
investment is computed as

z 99648

Rate of returp = B -1 - 08034
This shows that the combined annual rate of return is 8.034 %, which is less than the best
ret interest rate (=.0804 for home loans), and one wonders why the optimum does not
take advantage of this opportunity. The answer is that the restriction stipulating that farm
and commercial loans account for at least 40% of all loans (constraint 2) forces the solu-
tion to allocate $4.8 million to commercial loans at the lower net rate of .078, hence low-
ering the overall interest rate to BH X 12+ 8 X 48 — 534 |n fact, if we'remove
constraint 2, the optimum will allocate all the funds to home loans at the higher 8.64% rate.
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PROBLEM SET 2.3C

1. Fox Enterprises is considering six projects for possible construction over the next four
years. The expected (present value) returns and cash outlays for the projects are given
below. Fox can undertake any of the projects partially or completely. A partial undertak-
ing of a project will prorate both the return and cash outlays proportionately. i

Cash outlay (31000}

Project Year ] Year 2 Year 3 Year 4 Return (31000)

1 105 144 22 2.4 32.40

2 83 12.6 a5 341 35.80

3 102 142 56 4.2 17.75

4 72 105 7.5 50 14.80

5 12.3 1.1 83 6.3 18.20

6 92 7.8 6.9 5.1 12.35
Awailable funds ($1000) 60.0 70.0 350 20.0

(a) Formulate the problem as a linear program, and determine the optimal project mix
that maximizes the total return. Ignore the time value of money.

(b) Suppose that if a poriion of project 2 is undertaken then at least an equal portion of
project 6 must undertaken. Modify the formulation of the model and find the new
optimal solution.

(¢) Inthe original model, suppose that any funds left at the end of a year are used in the
next year. Find the new optimal solution, and determine how much each year “bor-
rows” from the preceding year. For simplicity, ignore the time value of money.

(d) Suppose in the original model that the yearly funds available for any year can be ex-
ceeded, if necessary, by borrowing from other financial activities within the company.
Ignoring the time value of money, reformulate the LP model, and find the optimum
solution. Would the new solution require borrowing in any year? If so, what is the
rate of return on borrowed money?

*2. Investor Doe has $10,000 to invest in four projects. The following table gives the cash
flow for the four investments.

Cash flow (31000} at the start of

Project Year I Year 2 Year 3 Year 4 Year 5
1 ~-1.00 0.50 0.30 1.80 1.20
2 -1.00 0.60 0.20 1.50 1.30
3 0.00 ~1.00 0.80 1.90 0.80
4 -1.00 0.40 0.60 1.80 0.95

The information in the table can be interpreted as fotlows: For project 1, $1.00 invested

at the start of year 1 will yield $.50 at the starl of year 2, §.30 at the start of year 3, $1.80
at the start of year 4, and $1.20 at the start of year 5. The remaining entries can be inter-
preted similarly. The entry 0.00 indicates that no transaction is taking place. Doe has the
additional option of investing in a bank account that earns 6.5% annually. All funds ac-

cumulated at the end of one year can be reinvested in the following year. Formulate the
problem as a linear program 10 determine the optimal allocation of funds to investment
opportunities.
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HiRise Construction can bid on two 1-year projects. The following table provides the
quarterly cash flow (in millions of dollars) for the two projects.

Cash flow (in millions of §} at

Project V08 411408 71108 0008 1231708
~10 -33 -15 1.8 50
1 ~30 -25 15 1.8 28

HiRise has cash funds of §1 miillion at the beginning of each quarter and may borrow at
most $1 million at 2 10% nominal annual interest rate. Any borrowed money must be re-
turned at the end of the quarter. Surplus cash can earn quarterly interest at an 8% nomi-
nal annual rate. Net accumulation at the end of one quarter is invested in the next quarter,
{a)} Assume that HiRise is allowed partial or full participation in the two projects. De-
termine the level of participation that will maximize the net cash accumulated on
12/31/2008.
(b) Isit possible in any quarler to borrow money and simultanecusly end up with sur-
plus funds? Explain.
In anticipation of the immense college expenses, a couple have started an annual invest-
ment program on their child’s eighth birthday that will last until the eighteenth birthday.
The couple estimate that they will be able to invest the following amounts at the begin-
ning of each year:

Year 1 2 3 4 5 é 7 2 9 10

Amount{$) 2000 2000 2500 2500 3000 3500 3500 4000 4000 5000

To avoid unpleasant sugprises, they want to invest the money safely in the following op-
tions: Insured savings with 7.3% annual yield, six-year government bonds that yield 7.9%
and have a current market price equal to 98% of face value, and nine-year municipal
bonds yielding 8.5% and having a curtent market price of 1.02 of face value. How should
the couple invest the money?

A business executive has the option to invest money in two plans: Plan A guarantees
that each dollar invested will earn §.70 a year later, and plan B guarantees that sach dol-
lar invested will earn $2 after 2 years. In plan A, investments can be made annually, and
in plan B, investments are aliowed for periods that are multiples of two years only. How
should the executive invest $100,000 to maximize the earnings at the end of 3 years?

A gambler plays a game that requires dividing bet money among four choices. The game
has three outcomes. The following tabie gives the corresponding gain or loss per dollar
for the different options of the game.

Return per doilar deposited in choice

Qutcome I 2 3 4
1 -3 4 -7 15
2 5 -3 g 4
3 3 -9 10 -8

The gambier has a total of $500, which may be played only once. The exact outcome
of the game is not known a priori. Because of this uncertainty, the gambler’s strategy is 1o
maximize the minirmum return produced by the three outcomes. How should the gambler
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2.34

allocate the $500 among the four choices? (Hint: The gambler’s net return may be posi-
tive, zero, of negative.)

7. (Lewis, 1996) Monthly bills in a household are received monthly (e.g., utilities and home
martgage), quarterly (e.g., estimated tax payment), semiannually (e.g., insurance) , or an-

nually (e.g., subscription renewals and dues). The following table provides the monthly
bills for next year.

Month | Jan. Feb. Mar. Apr. May Jun. Jul.  Aug Sep. Oct. Nov. Dec. | Total

$ 800 1200 400 700 600 900 1500 1000 900 1100 1300 1600 | 12000

To account for these expenses, the family sets aside $1000 per month, which is the
average of the total divided by 12 months. If the money is deposited in a regular savings
account, it can earn 4% annual interest, provided it stays in the account at least one
month. The bank also offers 3-month and 6-month certificates of deposit that can earn
5.5% and 7% annual interest, respectively. Develop a 12-month investment schedule that
will maximize the family’s total return for the ycar. State any assumptions or require-
ments needed to reach a feasible solution.

Production Planning and Inventory Control

There 1s a wealth of LP applications to production and inventory control, ranging from
simple allocation of machining capacity to meet demand to the more complex case of
using inventory to “dampen” the effect of erratic change in demand over a given plan-
ning horizon and of using hiring and firing to respond to changes in workforce needs.
This section presents three examples. The first deals with the scheduling of products
using common production facilities to meet demand during a single period, the second
deals with the use of inventory in a multiperiod production system to fill future demand,
and the third deals with the use of a combined inventory and worker hiring/firing to
“smooth” production over a muitiperiod planning horizon with fluctuating demand.

Example 2.3-4 (Single-Period Production Model)

In preparation for the winter season, a clothing company is manufacturing parka and goose
overcoats, insulated pants, and gloves. All products are manufaciured in four different depart-
ments: cutting, insulating, sewing, and packaging. The compaay has received firm orders for its
products, The contract stipulates a penalty for undelivered items. The following tabie provides
the pertinent data of the situation.

Time per units (hr)

Department Parka Goose Pants Gloves Capacity {(hr)
Cutting 30 30 25 15 1000
Insulating 25 .35 30 10 1000

Sewing - 45 .50 .40 22 1000
Packaging 15 15 A 03 1000
Demand 800 750 600 500

Unit profit $30 $40 $20 310

Unit penalty $15 $20 310 8

Devise an optimal production plan for the company.
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Maihcematical Model: The delinition of the variables is straightforward. Let

x, = number of parka jackets

x; = number of goose jackets
x3 = number of pairs of pants

x4 = number of pairs of gloves

The company is penalized for not meeting demand. This means that the objective of the problem
is to maximize the net receipts, defined as

Net receipts = Total profit — Total penalty

The total profit is readily expressed as 30x; + 40x, + 20xy -+ 10x,. The total penalty is a func-

tion of the shortage quantities (= demand — units supplied of each product). These quantities
can be determined {rom the following demand limits:

xy = 800, x, = 750, x5 = 600, x4 = 500
A demand is not fulfilled if its constraint is satisfied as a strict inequality. For example, if 650

parka jackets are produced, then x, = 650, which leads to a shortage of 800 — 650 = 150 parka

jackets. We can express the shortage of any product algebraically by defining a new nonnegative
variable—namely,

s; = Number of shortage units of product j, j = 1,2,3,4
In this case, the demand constraints can be written as

x;+ 5 =800, x5 + 55 = 750, x5 + 5, = 600, x4 + 54 = 500
x;=0,5=20/=12324

We can now compute the shortage penalty as 155, + 20s, + 105, + 8s4. Thus, the objective func-
tion can be written as

Maximize z = 30x; + 40x, + 20x3 + 10x, — (155; + 205, + 105y + 8sy)

To complete the model, the remaining constraints deal with the production capacity restric-
tions; namely

30x, + 30x; + 25x; + .15x,

1A
ot
=
=

Cutting)

45x; + 50x; + 40x3 + 22x, = 1000

(

250 + 35x; + 30x; + .10x, = 1000 (Insulating)
(Sewing)
(

A5x) + 15x; + 10xy + 05x5 = 1000 (Packaging)
The compiete model thus becomes

Maximize z = 30x; + 40x; + 20x3 + 10x, — (155) + 205, + 1055 + 8sy)
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subject to

30x; + 30xy + 25x; + .15x, = 1000
25x; + 35x; 4+ 30x; + .10x, = 1000
A5x; + .50x, + .40xy + 22x, = 1000
A5x; + 15x; + 10x3 + 05x4 = 1000
x) + 5 = 800, x5 + 5, = 750, x5 + 853 = 600, x4 + 54 = 500

ijO,sj = 0,} = 1,2,3,4

Solution:

The optimum solution is z = $64,625, x; = 850, x; = 730, x; = 3875, x, =500, 5y = 5, =
84 = 0, 53 = 212.5. The solution satisfies all the demand for both types of jackets and the gloves.
A shortage of 213 (rounded up from 212.5) pairs of pants will result in a penalty cost of
213 X $10 = $2130.

Example 2.3-5 (Multiple Period Production-Inventory Model}

Acme Manufacturing Company has contracted to deliver home windows over the next 6 months.
The demands for each month are 100,250, 190, 140,220, and 110 units, respectively. Production cost
per window varies from month to month depending on the cost of labor, matenial, and utilities.
Acme estimates the production cost per window over the next 6 months to be $50, $45, $55, $48,
$52, and $50, respectively. To take advantage of the fluctuations in manufacturing cost, Acme may
clect to produce more than is needed 1 a given month and hold the excess units for delivery in
later months. This, however, will incur storage costs at the rate of $8 per window per month as-
sessed on end-of-month inventory. Develop a linear program to determine the optimum produc-
tion schedule.

Mathematical Model: The variables of the problem include the monthly production amount
and the end-of-month inventory. Fori = 1,2,...,6, let

x; = Number of units produced in month {

I; = Inventory units left at the end of month ¢

The relationship between these variables and the monthly demand over the six-month horizon is
represented by the schematic diagram in Figure 2.5. The system starts empty, which means that
Iy = 0.

The objective functionr seeks to minimize the sum of the production and end-of-month in-
ventory costs. Here we have,

Total production cost = 50x; + 45x, + 55x; + 48x; + 52x; + 50x4
Total inventory cost = 8() + I + [y + Iy + Is + Ig)
Thus t'hc objective function is
Minimize z = 50x, + 45x; + 55x4 + 48x, + 52x5 + 50x,
+8(h+ L+ L+ I+ s+ )

e
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FIGURE 2.5
Schematic representation of the production-inventory system

The constraints of the problem can be determined directly from the representation in
Figure 2.5. For each period we have the following balance equation:

Beginning inventory + Production amount — Ending inventory = Demand

This is translated mathematically for the individual months as

Ly + xy ~ [; =100 (Month 1)
Iy + x; — L, =250 {Month 2)
L+ x3 — =190 (Month3)
I+ x4 — I, =140 (Month 4)
Iy + xg — [5 =220 (Month 5)
Is + xg — Iy = 110 (Month 6)
xp L= 0,foralli=1,2,...,6
L=0

! For the problem, f = 0 because the situation starts with no initial inventory. Also,in any optimal
' solution, the ending inventory I will be zero, because it is not logical to end the horizon with
positive irventory, which can only incur additiona) inventory cost without serving any purpose.

The complete model is now given as

Minimize z = 50x; + 45x, + 55x3 + 48x; + 52x5 + S0xg
+8(Il + L+ Iy + x4 + 15 + I(,)

subject to

xy — Iy =100 (Month 1)
L+ x,— I, =250 {Month?2)
L+ x3—f=190 (Month3)
L+ x,— 1, =140 (Month4}
Iy + x5 — 15, =220 (Month5)
Is + x4 — I = 110 (Month 6)
x, I = 0, foralli = 1,2,...,6
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FIGURE 2.6

Optimum solution of the production-inventory problem
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230 190 140 220 110

Solution:

The optimum solution is summarized in Figure 2.6. It shows that each month’s demand is satis-
fied directly from the month’s production, except for month 2 whose production quantity of 440
units covers the demand for both months 2 and 3. The total associated cost is z = $49,980.

Example 2.3-6 (Multiperiod Production Smoothing Model)

A company will manufacture a product for the next four months: March, April, May, and June.
The demands for each month are 520, 720, 520, and 620 units, respectively. The company has a
steady workforce of 10 employees but can meet fluctuating producticn needs by hiring and fir-
ing temporary workers, if necessary. The extra costs of hiring and firing in any month are $§200
and $400 per worker, respectively. A permanent worker can produce 12 units per month, and a
temporary worker, lacking comparable experience, only produce 10 units per month. The com-
pany can produce more than needed in any month and carry the surplus over (o a succeeding
month at a holding cost of $50 per unit per month. Develop an optimal hiring/firing policy for
the company over the four-moath planning horizon.

Mathematical Model: This model is similar to that of Example 2.3-5 in the general sense that
each month has its production, demand, and ending inventory. There are two exceptions: (1) ac-
counting for the permanent versus the temporary workforce, and (2) accounting for the cost of
hiring and firing in each month.

Because the permanent 10 workers cannot be fired, their impact can be accounted for by
subtracting the units they produce from the respective monthly demand. The remaining demand,
if any, is satisfied through hiring and firing of temps. From the standpoint of the model, the net
demand for each month is

Demand for March = 520 — 12 X 10 = 400 units
Demand for April = 720 — 12 X 10 = 600 units
Demand for May = 520 — 12 X 10 = 400 units

Demand for June = 620 — 12 X 10 = 500 units
Fori = 1,2,3, 4, the variables of the model can be defined as

x; = Net number of temps at the start of month i ¢fzer any hiring or firing
S; = Number of temps hired or fired at the start of month i

I; = Units of ending inventory [or month ¢
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The variables x; and [;, by definition, must assume nonnegative values. On the other hand, the
variable §; can be positive when new temps are hired, negative when workers are fired, and zero
if no hiring or firing occurs. As a result, the variable must be unrestricted in sign. This is the first
instance in this chapter of using an unrestricted variable. As we will see shortly, special substitu-
tion is needed to allow the implementation of hiring and firing in the model.

The objective is to minimize the sum of the cost of hiring and firing plus the cost of holding
inventory from one month to the next. The treaiment of the inventory cost is similar to the one
given in Example 2.3-5—namely,

Inventory holding cost = 50(f, + I, + £§)

(Note that I, = 0 in the optimum solution.} The cost of hiring and firing is a bit more

involved. We know that in any optimum solution, at least 40 temps (= %ﬂ) must be
hired at the start of March to meet the month’s demand. However, rather than treating this situ-
ation as a special case, we can let the oplimization process take care of it automatically. Thus,

given that the costs of hiring and firing a temp are 3200 and $400, respectively, we have

at the start of

(Cost of hiring
March, April, May, and June

Number of hired temps
= 200
and firing )

Number of fired temps
+ 400 at the start of
March, April, May, and June

To translate this equation mathematically, we will need to develop the constraints first.

The constraints of the mode] deal with invenlory and hiring and firing. First we develop the
inventory constrainis. Defining x; as the number of temps available in month i and given that the
productivity of a temp is 10 units per month, the number of units produced in the same month is
10x;. Thus the inventory consiraints are

10x, = 400 + [, (March)}
I + 10x; = 600 + f; {April)
12 + 10x3 = 400 + 13 (May)
L+ 10x, =500 (June}
X, X035, x5 20,1, 5, 320
Next, we develop the constraints dealing with hiring and firing. First, note that the temp work-
force starts with x; workers at the beginaning of March. At the start of April, x; will be adjusted

(up or down) by $, to generate x,. The same idea applies to x5 and x4. These observations lead to
the following equations

x =S8
Xy = x + 5

X3 =xp + 5
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Xy = x3+ S5,
8, 52, 54, 54 unrestricted in sign
xl! x?.s xJ‘ x4 = 0
The variables §), 3, S5, and 54 represent hiring when they are strictly positive and firing

when they are strictly negative. However, this “qualitative” information cannot be used in a
mathematical expression. Instead, we use the following substitution:

S, =87 — 8§, where S7, 8V =0

The unrestricted variable §; is now the difference between two nonnegative variables S; and S}
We can think of $; as the number of temps hired and §7 as the number of temps fired. For ex-
ample, if S; =5 and S7 = 0 then S; = 5 — 0 = 45, which represents hiring. If §7 = 0 and
§t = 7then §; = 0 — 7 = ~7, which represents firing. In the first case, the corresponding cost
of hiring 1s 20057 = 200 X 5 = $1000 and in the second case the corresponding cost of ficing is
40087 = 400 X 7 = $2800. This idea is the basis for the development of the objective function.

First we need to address an important point: What if both S} and S$ are positive? The an-
swer Is that this cannot happen because it implies that the solution calis for both hiring and firing
in the same month. Interestingly, the theory of linear programming (see Chapter 7) tells us that
S and S7 can never be positive simultaneously, a result that confirms intuition.

We can now write the cost of hiring and firing as follows:

Cost of hiring = 200(57 + 55 + 53 + §7)

Cost of firing = 400(ST + % + 57 + S1)

The complete model is
Minimize z = 30(1;, + L + 15 + 1) + 200(S7 + 85 + 85 + S7)
+400(S7 + S7 + 83 + S1)

subject 10

' 10%, = 400 + 1,
I+ 10x; = 600 + I
L+ 10x; =400 +
Iy + 10x, = 500
X, =Sy -8
X=X +57 - 53
Xy=x,+ 85 — §3
Xy= %3+ 87— 5%
57,87, 85,53, 835,53, 85,81 = 0
Xy, X3, X3, %420

f|, [2, !3 =0

KA s
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Solution:

The optimum solution is z = $19,500, x; = 50, x, = 50, x3 = 43, x4 = 45, §7 = 50, §3 = 5,
I, = 100, I; = 50. All the remaining variables are zero. The solution calls for hiring 50 temps in
March (87 = 50) and holding the workforce steady till May, when 5 temps are fired (§7 = 5).
No further hiring or firing is recommended until the end of June, when, presumably, all temps are
terminated. This solution requires 100 units of inventory to be carried into May and 50 units to
be carried into June.

PROBLEM SET 2.3D

1. Toolco has contracted with AutoMate to supply their automotive discount stores with
wrenches and chisels. AutoMate’s weekly demand consists of at least 1500 wrenches and
1200 chisels. Toolco cannot produce all the requested units with its present ong-shift ca-
pacity and must use overtime and possibly subcontract with other tool shops. The result is
an increase in the production cost per unit, as shown in the following table. Market de-
mand restricts the ratio of chisels to wrenches to at least 2:1.

Weekly production
Tool Production type range {units} Unit cost ($)
Wrenches Regular 0-550 2.00
Overtime 551-800 2.80
Subconlracting 801-o0 3.00
Chisel Regular 0-620 2.10
Qvertima 621-900 3.20
Subcontracling 901-00 420

(a) Formulate the problem as a linear program, and determine the optimum production
schedule for eacl tool.

(b) Relate the fact that the production cost function has increasing unit costs to the va-
lidity of the model.

2. Four products are processed sequentially on three machines. The following table gives
the pertinent data of the problem.

Manufacturing time {br) per unit

Machine Costperhr(3) Product]  Product2  Product3  Product4  Capacity (hr)
1 10 2 3 4 2 500
2 5 3 2 1 2 380
3 4 7 3 2 1 450
Unit selling
price ($) 75 70 55 45

Formulate the problem as an LP model, and find the optimum sclution.
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*3.

5.

A manufacturer produces three models, I, IT, and II1, of a certain product using raw mate-
rials A and B. The following table gives the data for the problem:

Requirements per unit

Raw material I 17 I Availability
A 2 3 5 4000
B 4 2 7 6000
Minimum demand 200 200 150
Profit per unit($) 30 20 50

The labor time per unit of model I is twice that of II and three times that of I1I. The en-
tire labor force of the factory can produce the equivalent of 1500 units of model I. Mar-
ket requirements specify the ratios 3:2:5 for the production of the three respective
models. Formulate the problem as a linear program, and find the optimum solution.

The dernand for ice cream during the three summer months (June, July, and August) at
All-Flavors Parlor is estimated at 300, 600, and 400 20-gallon cartons, respectively. Two
wholesaters, 1 and 2, supply All-Flavors with its ice cream. Although the flavors from the
two suppliers are different, they are interchangeable. The maximum number of cartons
either supplier can provide is 400 per month. Also, the prices the two suppliers charge
change from one month to the next according to the following schedule:

Price per cartoa in month

June July August
Supplier 1 $100 $110 $120
Supplier 2 $115 $108 $125

To 1ake advantage of price fluctuation, All-Flavors can purchase more than is needed for
a month and store the surplus to satisfy the demand in a later month. The cost of refriger-
ating an ice cream carton is 35 per month. It is realistic in the present situation to assume
that the refrigeration cost is a function of the average number of cartons on hand during
the month. Develop an optimum schedule for buying ice cream from the two suppliers.

The demand for an item cever the next four quarters is 300, 400, 45(, and 230 units, respec-
tively. The price per unit starts at $20 in the first quarter and increases by $2 each quarter
thereafter. The supplier can provide no more than 400 units in any one quarter. Although
we can take advantage of lower prices in early quarters, a storage cost of $3.50 is incurred
per unit per quarter. In addition, the maximum number of units that can be held over
from one quarter to the next cannot exceed 100. Develop an optimum schedule for pur-
chasing the item to meet the demand.

A company has contracted to produce two products, A and B, over the months of June,

July, and August. The total production capacity (expressed in hours) varies monthly. The
following table provides the basic data of the situation:

June July August
Demand for A (units) 500 5000 750
Demand for B {units) 1000 1200 1200
Capacity (hours) 3000 3500 3000
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The production rates in units per hour are 1.25 and 1 for products A and B, respec-
tively. All demand must be met. However, demand for a later month may be filled from
the production in an earlier one. For any carryover from one menth to the next, holding
costs of $.90 and $.75 per unit per month are charged for products A and B, respectively.
The unit production costs for the two products are $30 and $28 for A and B, respectively.
Determine the optimum production schedule for the two products.

*7. The manufacturing process of a product consists of two successive operations,i and IL. The
following table provides the pertinent data over the months of June, July, and August:

June July August
Finished product demand {units) 500 450 600
Capacity of operation I (hr) 800 700 550
Capacity of operation II (hr) 1000 850 700

Producing a unit of the product takes .6 hour on operation I plus .8 hour on operation
IL. Qverproduction of either the semifinished product (operation 1} or the finished
product (operation II) in any month is allowed for use in a later month. The corre-
sponding holding costs are $.20 and $.40 per unit per month. The production cost varies
by operation and by month. For operation 1, the unit production cost is $10,$12, and
$11 for June, July, and August. For operation 2, the corresponding unit production cost
is $15, $18, and $16. Determine the optimal production schedule for the two operations
over the 3-month horizon.

8. Two products are manufactured sequentially on two machines. The time available on
each machine is 8 hours per day and may be increased by up to 4 hours of overtime, if
necessary, at an additional cost of $100 per hour. The table below gives the production
rate on the two machines as well as the price per unit of the two products. Determine the
optimum production schedule and the recommended use of ovectime, if any.

Production rate (units/ar)

Product 1 Product 2
Machine 1 5 5
Machine 2 8 4
Price per unit {$) 110 118

Blending and Refining

A number of LP applications deal with blending different input matenals to produce
products that meet certain $pecifications while minimizing cost or maximizing profit.
The input materials could be ores, metal scraps, chemicals, or crude oils and the output
products could be metal ingots, paints, or gasoline of various grades. This section pre-
sents a (simplified) model for oil refining. The process starts with distilling crude oil to
produce intermediate gasoline stocks and then blending these stocks to produce final
gasolines. The final products must satisfy certain quality specifications (such as octane
rating). In addition, distillation capacities and demand limits can directly affect the
level of production of the different grades of gasoline. One goal of the model is deter-
mine the optimat mix of final products that will maximize an appropriate profit func-
tion. In some cases, the goal may be to minimize a cost function.
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Example 2.3-7 (Crude Qil Refining and Gasoline Blending)

Shale OQil, located on the island of Aruba, has a capacity of 1,500,000 bbl of crude oil per day. The
final products from the refinery include three types of unleaded gasoline with different octane
numbers (ON): regular with ON = 87, premium with ON = 89, and super with ON = 92. The
refining process encompasses three stages: (1) a distillation tower that produces feedstock
(ON = 82) at the rate of .2 bbl per bbl of crude oil, (2) a cracker unit that produces gasoline
stock (ON = 98) by using a portion of the feedstock produced from the distillation tower at the
rate of .5 bbl per bbl of feedstock, and (3) a blender unit that blends the gasoline stock from the
cracker unit and the feedstock from the distiliation tower. The company estimates the net profit
per barrel of the three types of gasoline to be $6.70, $7.20, and $8.10, respectively. The input ca-
pacity of the cracker unit is 200,000 barrels of feedstock a day. The demand limits for regular,
premium, and super gasoline are 50,000, 30,000, and 40,000 barrels per day. Develop a mode} for
determining the optimum production schedule for the refinery.

Mathematical Model: Figure 2.7 summarizes the elements of the model. The variables can be
defined in terms of two input streams to the blender (feedstock and cracker gasoline) and the
three final products. Let

x;; = bbl/day of input stream { used to blend final product j,i = 1,2;; = 1,2,3

Using this definition, we have

Daily production of regular gasoline = x;; + x; bbl/day
Daily production of premium gasoline = x;5 + x5, bbl/day
Daily production of super gasoline = x;3 + x3; bbl/day

( Daily output ) 3 (Daily produclion) N (Daily produclionj
of blender unit/ ~ \ of regular gas of premium gas

. (Daily productionj
of super gas

= (xy + x1) + (X7 + xp) + (x13 + xy3)bblday

Xy txptxg X + Xy, ON = 87
> —
ON = 82
Blender
51 21 + N =§9
X2+ 2p, O
Crude o Ty Xgy Xy
»| Distillation »] Cracker > X3+ X3, ON =92
ON =82 ON =98 ’
Feed-
stock

FIGURE 2.7
Product flow in the refinery problem

!"-n-..-r.-' .
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Daily feedstock

to blender j = x5+ xi3 + x5 bbl/day

feed to blender ) = Xz + Xy + xp bbliday

Daily feedstock

(Daily cracker unit
( to cracker

) = 2(]:21 + x99 + Eu)bb”day

(Daily crude oil used

The objective of the modeli is to maximize the total profit resulting from the sale of all three
grades of gasoline. From the definitions given above, we get
Ma){imize = 6.?0(,'(” + ).‘21) + 7.20(.‘512 =+ IZZ) + 8.10(I33 + I‘B)

The constraints of the problem are developed as follows:

1. Daily crude oil supply does not exceed 1,500,000 bbi/day:
5(xy + x1p + xi3) + 10(xy + xp2 + x33) = 1,500,000
2. Cracker unit input capacity does not exceed 200,000 bbl/day:
2(xy) + Xy + xp) = 200,000

3. Daily demand for regular does not exceed 50,000 bb!:
X1 + Xy = 50,(}00

4. Daily demand for premium does not exceed 30,000:

Xz + X359 = 30,000

5. Daily demand for super does not exceed 40,000 bbi:

.r|3 + Iza = 40,000

6. Octane number (ON) for regular is at least 87:

The octane number of a gasoline product is the weighted average of the octane numbers of
the input streams used in the blending process and can be computed as

(Average ON of) _
regular gasoline
Feedstock ON X fecdstock bbl/day + Cracker unit ON X Cracker unit bbl/day
Total bbl/day of regutar gasoline

_ 82x“ -+ 98.[11
xp oy

Thus, octane nuntber constraint for regular gascline becomes

824(” -+ 98.:21 - 8’?
Xy + xy
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The constraint is linearized as
82x” + 98.[21 = 87()(“ + le)

7. Qctane number (ON) for premiwm is at least 89:

82X12 + 983(22 -
Xt am

89
which is linearized as
82xy; + 9Bxp = 89(x); + xp)
8. Octane number (ON} for super is at least 92:

82x)5 + 9SX23
= T
X3 + Xy

92

ar

82x|3 + 98xy; = 92(X13 + X)

The compiete model is thus summarized as
Maximize z = 6.70(x)) + xp) + 7.20(x1; + x53) + 8.10{x 3 + xp)
subject to
5(xy + xpp + xp3) + 10(xg + xpp + x93) = 1,500,000
2{xy + x3p + x23) = 200,000
Xy + x5 = 50,000
x1p + xpp = 30,000
X3 + xpy = 40,000
82xy + 98xy = 87(xyy + xq)
82x)3 + 98xyy = 8% xy; + x97)
82xyy + 9Bxys = 92(xy3 + xz3)
X1, X12, X33, X1, X, ¥y 2 0

The last three constraints can be simplified to produce a constant right-hand side.

Scolution:

The optimum solution (using file amplEx2.3-7.1xt) is z = 1,482,000, xq; = 20,625, x5, = 9375,
X3 = 16,875, xp = 13,125, x5 = 15,000, x5 = 25,000. This translates to
Daily profit = $1,482,000
Daily amount of regular gasoline = xy; + x5, = 20,625 + 9375 = 30,000 bbl/day
Daily amount of premium gasocline = x;; + xpn = 16,875 + 13,125 = 30,000 bbl/day
Daily amount of regular gasoline = x;3 + xp3 = 15,000 + 25,000 = 40,000 bbl/day

The solution shows that regular gasoline production is 20,000 bbl/day short of satisfying the
maximum demand. The demand for the remaining two grades is satisfied.
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PROBLEM SET 2.3E

1.

*2.

Hi-V produces three types of canned juice drinks, 4, B, and C, using fresh strawberries,
grapes, and apples. The daily supply is limited to 200 tons of strawberries, 100 tons of
grapes, and 150 tons of apples. The cost per ton of strawberries, grapes, and apples is $200,
$100, and $90, respectively. Each ton makes 1500 Ib of strawberry juice, 1200 1b of grape
juice, and 1000 b of apple juice. Drink A is a 1:1 mix of strawberry and apple juice. Drink 8
is 1:1:2 mix of strawberry, grape, and apple juice. Drirk Cis a 2:3 mix of grape and apple
juice. All drinks are canned in 16-0z (1 Ib) cans. The price per can is $1.15,$1.25, and $1.20
for drinks A, B,and C. Determine the optimal production mix of the three drinks.

A hardware store packages handyman bags of screws, bolts, nuts, and washers. Screws corme
in 100-1b boxes and cost $110 each, bolts come in 100-[b boxes and cost $150 each, nuts come
in 80-1b boxes and cost $70 each, and washers come in 30-1b boxes and cost $2¢ each. The
handyman package weighs at least 1 1b and must include, by weight, at least 10% screws and
25% bolts, and at most 15% nuts and 10% washers, To balance the package, the number of
bolts cannot exceed the number of nuts or the number of washers. A bolt weighs 10 times as
much as a nut and 50 times as much as a washer. Determine the optimal mix of the package.

All-Natural Coop makes three breakfast cereals, A, B, and C, from four ingredients:
rolled oats, raising, shredded coconuts, and stivered almonds. The daily availabilities of the
ingredients are 5 tons, 2 tons, 1 ton, and 1 ton, respectively. The corresponding costs per
ton are $100, $120, $110, and $200. Cereal A is a 50:5:2 mix of oats, raisins, and almond.
Cereal B is a 60:2:3 mix of oats, coconut, and almond. Cereal C is a 60:3:4.:2 mix of oats,
raisins, coconut, and almond. The cereals are produced in jumbo 5-1b sizes. Ali-Natural
sells A, B, and C at 32, $2.50, and $3.00 per box, respectively. The minimum daily demand
for cereals A, B, and C 15 500, 600, and 500 boxes. Determine the optimal production mix
of the cereals and the associated amounts of ingredients.

A reftnery manufactures two grades of jet fuel, F1 and F2, by blending four types of gaso-
line, A, B, C,and D. Fuel F1 uses gasolines 4, B, C,and D in the ratio 1:1:2:4, and fuel 2
uses the ratio 2:2:1:3. The supply limits for 4, B, C, and £ are 1000, 1200, 900, and 1500
bbl/day, respectively. The costs per bbl {or gasolines A, B, C,and D are $120, $90, $100, and
$150, respectively. Fuels F1 and £2 sell for $200 and $250 per bbl. The minimum demand
for £1 and F2 is 200 and 400 bbl/day. Determine the optimal production mix for F1 and F2.

An oil company distills two types of crude oil, A and B, to produce regular and premium
gasoline and jet fuet. There are limits on the daily availability of crude oil and the minimum
dernand for the final products. If the production is not sufficient to cover demand, the short-
age must be made up from outside sources at a penalty. Surplus production will not be sold
immediately and will incur storage cost. The following tabie provides the data of the situation:

Fraction yield per bbl

Crude Regular Premium Jet Price/bbl ($) bbl/day
Crude A 20 1 25 30 2500
Crude B 25 3 10 40 3000
Demand (bbl/day) S00 700 400
Revenue ($/bbi) 50 70 120
Storage cost for surplus

production {$/bbl) 2 3 4
Penalty for unfifled

demand (3/bbl) 10 15 20

Determine the optimal product mix for the refinery.
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6. In the refinery situation of Problem 3, suppose that the distillation unit actually produces
the intermediate products naphtha and light oil. One bbl of crude A produces .35 bbl of
naphtha and .6 bbl of light oil, and one bbl of crude B produces .45 bbl of naphtha and
.5 bbl of light oil. Naphtha and light il are blended to produce the three final gasoline
products: One bbl of regular gasoline has a blend ratio of 2:1 (naphtha to light oil), one
bbl of premium gasoline has a blend ratio of ratic of 1:1, and one bbl of jet fuel has a
blend ratio of 1:2. Determine the optimal production mix.

7. Hawait Sugar Company produces brown sugar, processed (white) sugar, powdered sugar,
and molasses from sugar cane syrup. The company purchases 4000 tons of syrup weekly
and is contracted to deliver at least 25 tons weekly of each type of sugar. The production
process starts by manufacturing brown sugar and molasses from the syrup. A ton of sysup
produces .3 ton of brown sugar and .1 ton of molasses. White sugar is produced by pro-
cessing brown sugar. It takes 1 ton of brown sugar to produce .8 ton of white sugar. Pow-
dered sugar is produced from white sugar through a special grinding process that has a
95% conversion efficiency (1 ton of white sugar produces .95 ton of powdered sugar).
The profits per ton for brown sugar, white sugar, powdered sugar, and molasses are $130,
$200, $230, and $33, respectively. Formulate the problem as a linear program, and deter-
mine the weekly production schedule.

8. Shale Cil refinery blends two petroleum stocks, A and B, to produce two high-octane gaso-
line products, [ and iI. Stocks A and B are produced at the maximum rates of 450 and 700
bbl/hour, respectively. The corresponding octane numbers are 98 and 89, and the vapor pres-
sures are 10 and 8 Ibfin®. Gasoline I and gasoline 1 must have octane numbers of at least 91
and 93, respectively. The vapor pressure associated with both products should not exceed
12 1b/in®. The profits per bbl of T and X1 are $7 and $10, respectively. Determine the optimum
production rate for [ and I and their blend ratios from stocks A and B. (Hint: Vapor pressure,
like the octane number, is the weighted average of the vapor pressures of the blended stocks.)

9. A foundry smeits steel, aluminum, and cast iron scraps to produce two types of metal in-
gots, I and 11, with specific limits on the aluminum, graphite and silicon contents. Alu-
minum and silicon briquettes may be used in the smelting process to meet the desired
specifications. The following tables set the specifications of the problem:

Contents (%)

Input item Afeminum Graphite Silicon Cost/ton {3) Available tons/day
Steel scrap 10 5 4 100 1000
Aluminum scrap 95 1 2 150 500
Casl iron scrap 0 t5 8 75 2500
Aluminum briquette 100 0 0 900 Any amount
Silicon briguctie 0 0 100 380 Any amount
Ingot | Ingot II
. Ingredicnt Minimum Maxinuum Minimum Maximum

Aluminum 8.1% 10.8% 6.2% £9%

Graphite 1.5% 3.0% 41% oo

Silicon 2.5% o 2.8% 41%

Demand (tons/day) 130 250

Determine the aptimal input mix the foundry should smelt.

2.3
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10. Two alloys, A and B, are made from four metals, I, 11, I11, and IV, according to the follow-
ing specifications:

Alloy Specifications Selling price (3)

A Atmost 80% of { 200
At most 30% of U
Atleast 50% of IV

B Between 40% and 60% of [T 300
Atleast 30% of IIT
At most 70% of IV

The four melals, in turn, are extracted from three ores according to the following data:

Constituents (%)

Maximum quantity

Ore {(1ons) I H i v Qihers Price/ton (3)
1 1000 20 10 30 30 10 30
2 2000 10 20 30 30 10 40
3 3000 3 5 70 20 0 50

How much of each type of atioy should be produced? (Hine: Let x,; be tons of ore
allocated to alloy &, and define w, as tons of alioy k produced.}

Manpower Planning

Fluctuations in a labor force to meet variable demand over time can be achieved
through the process of hiring and firing, as demonstrated in Example 2.3-6. There are
situations in which the effect of fluctuations in demand can be “absorbed” by adjusting
the start and end times of a work shift. For example, instead of following the tradition-
al three 8-hour-shift start times at 8:00 a.m., 3:00 eM., and 11:00 pM., we can use over-
lapping 8-hour shifts in which the start time of each is made in response to increase or
decrease in demand.

The idea of redefining the start of a shift to accommodate fluctuation in demand
can be extended to other operating environments as well. Example 2.3-8 deals with the
determination of the minimum number of buses needed to meet rush-hour and off-
hour transportation needs.

Real-Life Application—Telephone Sales Manpower Planning at Qantas Airways

Australian airline Qantas operates its main reservation offices from 7:00 till 22:00 using
6 shifts that start at different times of the day. Qantas used linear programming (with
imbedded queuing analysis) to staff its main telephone sales reservation office effi-
ciently while providing convenient service to its customers. The study, carried out in the
late 1970s, resulted in annual savings of over 200,000 Australian dollars per year. The
study is detailed in Case 15, Chapter 24 on the CD.
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Example 2.3-8 (Bus Scheduling)

Progress City is studying the feasibility of introducing a mass-transit bus system that will allevi-
ate the smog problem by reducing in-city driving. The study seeks the minimum number of buses
that can handle the transportation needs. Afier gathering necessary information, the city engi-
neer noticed that the minimum number of buses needed fluctuated with the time of the day and
that the required number of buses could be approximated by constant values over successive 4-
hour intervals. Figure 2.8 summarizes the engineer’s findings. To carry out the required daily
maintenance, each bus can operate 8 successive hours a day only.

Mathemafical Model: Determine the number of operating buses in each shift {variables) that
will meet the minimum demand (constraints) while minimizing the total number of buses in op-
eration {objective).

You may already have noticed that the definition of the variables is ambiguous. We know
that each bus will run for 8 consecutive hours, but we do not know when a shift should start. If we
follow a normal three-shift schedule (8:01 A.M.-4:00 P.M., 4:01 P.M.-12:00 midnight, and 12:01
A.M.-8:00 A.M.) and assume that x,, x,, and x3 are the number of buses starting in the first, sec-
ond, and third shifts, we can see from Figure 2.8 that x; = 10, x; = 12, and x; = 8. The corre-
sponding minimum number of daily busesis x; + x, + x3 = 10 + 12 + 8 = 30,

The given solution is acceptable only if the shifts must coincide with the normal three-shift
schedule. It may be advantageous, however, to allow the optimization process to choose the
“best” starting time for a shift. A reasonable way to accomplish this is to allow a shift to start
every 4 hours. The bottom of Figure 2.8 ilustrates this idea where overlapping 8-hour shifts

2
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FIGURE 2.8

Number of buses as a function of the time of the day
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. may start at 12:01 A.M., 4:01 A.M., 8:01 A.M., 12:01 pM., 4:01 PM., and 8:01 P.M. Thus, the vari-
: ables may be defined as

x; = number of buses starting at 12: 01 a.m.

X, = number of buses starting at 4:01 a.m.

x3 = number of buses starting at 8:01 A.m.

x4 = number of buses starting at 12:01 pM.
x5 = number of buses starting at 4:01 pM.
x¢ = number of buses starting at 8:01 .M.

We can see from Figure 2.8 that because of the overlapping of the shifts, the number of buses for
the successive 4-hour periods is given as

Time period Number of buses in operation
12:01 av. - 4:00 A, X+ x4

: 4:01 A, — B:00 At X, ¥ xs

{ 8:01 A.M. - 12:00 noon Xy + x3

,[ 12:01 pMm. - 4:00 M, X3 + x4

: 4:01 ens. — 8:00 P Xy + x5

f 8:01 AM. — 12:00 AM. X5 + X

The complete model is thus written as

Minimize z = x; + x; + x3 + x4 + x5+ xg

: subject to
X3 + xg = 4(12:01 Am.-4:00 Am.)
i Xy ¥ 1y =z 8(4:01 Am.-800 A.Mm.)
X+ X = 10 (8:01 a.M.-12:00 noon)
X3 + Xy = 7 (12:01 p.M.-4:00 P.M.)
xi + x5 = 12 (4:01 pM.-8:00 M)
xs + xg = 4 (8:01 PM.-12:00 P.M.)
x=0,j=12,...,6
Solution:

The optimal solution calls for using 26 buses to satisfy the demand with x, = 4 buses to start at
1201 AM., x; = 10 at 4:01 A.M., xs = 8 a1 12:01 PM., and x5 = 4 at 4:01 PM.

PROBLEM SET 2.3F

*1. In the bus scheduling example suppose that buses can run either 8- or 12-hour shifts If 2
bus runs for 12 hours, the driver must be paid for the extra hours at 150% of the regular
hourly pay. Do you recommend the use of 12-hour shifts?

v~
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2. A hospital empioys volunteers to staff the reception desk between 8:00 Am. and 10:00 M.
Each volunteer works three consecutive hours except for those starting at 8:00 pM. who
work for two hours only. The minimum need for volunteers is approximated by a step
function over 2-hour intervals starting at 8:00 a.M. as 4, 6, 8,6, 4, 6, 8. Because most volun-
teers are retired individuals, they are willing to offer their services at any hour of the day
(8:00 am. to 10:00 p.). However, because of the large number of charities competing for
their service, the number needed must be kept as low as possible. Determine an optimal
schedule for the start time of the volunteers

3. InProblem 2,suppose that no volunteers will start at noon or 6:00 PM. to allow for lunch
and dinner. Determine the optimal schedule.

4. In an LTL (less-than-truckload) trucking company, terminai dacks include casual work-
ers who are hired temporarily to account for peak loads. At the Omaha, Nebraska, dock,
the minimum demand for casual workers during the seven days of the week (starting on
Monday) is 20, 14, 10, 15, 18,10, 12 workers. Each worker is contracted to work five con-
secutive days. Determine an optimal weekly hiring practice of casual workers for the
company.

*5. On most university campuses students are contracted by academic departments to do er-
rands, such as answering the phone and typing. The need for such service fluctuates dur-
ing work hours (8:00 a.m. 10 5:00 pm.). In the IE department, the minimum number of
students needed is 2 between 8:00 A.M. and 10:00 A.M., 3 between 10:01 A.M. and 11:00
AM., 4 between 11:01 a.M. and 1:00 pM., and 3 between 1:01 r.v. and 5:00 pm. Each stu-
dent js allotted 3 cousecutive hours (except for those starting at 3:01, who work for
2 hours and those who start at 4:01, who work for one hour). Because of their flexibie
schedule, students can usually report to work at any hour during the work day, except
that no student wants to start working at tunch time (12:00 noon). Determine the mini-
mum number of students the 1E department should employ and specify the time of the
day at which they should report to work.

6. A large department store operates 7 days a week. The manager estimates that the mini-
mum number of salespersons required to provide prompt service is 12 for Monday, 18 for
Tuesday, 20 for Wednesday, 28 for Thursday, 32 for Friday, and 40 for each of Saturday -
and Sunday. Each salesperson works 5 days a week, with the two consecutive off-days
staggered throughout the week. For example, if 10 salespersons start on Monday, two can
take their off-days on Tuesday and Wednesday, five on Wednesday and Thursday, and
three on Saturday and Sunday. How many salespersons should be contracted and how
should their off-days be atlocated?

Additional Applications

The preceding sections have demonstrated the application of LP to six representative
arcas. The fact is that LP enjoys diverse applications in an enormous number of areas.
The problems at the end of this section demonstrate some of these areas, ranging from
agriculture to military applications. This section also presents an interesting application
that deais with cutting standard stocks of paper rolls to sizes specified by customers.

Example 2.3-9 (Trim Loss or Stock Slitting)

The Pacific Paper Company produces paper roils with a standard width of 20 feet each. Special
customer orders with different widths are produced by slitting the standard rolis Typical orders
(which may vary daily) are summarized in the folowing table:
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Order Desired width (ft) Desired number of roils
1 5 150
2 7 200
3 9 300

In practice, an order is ftlled by setting the knives to the desired widths. Usually, there are a
number of ways in which a standard roll may be slit to fill a given order. Figure 2.9 shows three
feasible knife settings for the 20-foot roll. Although there are other feasible settings, we limit the
discussion for the moment to settings I, 2, and 3 in Figure 2.9. We can combine the given settings
in & number of ways to fill orders for widths 5,7, and 9 feet. The following are exampies of feasi-
ble combinations:

1. Siit 300 (standard) rolls using setting 1 and 75 rolls using setting 2.
2. Shit 200 rolls using setting 1 and 100 rolls using setting 3.

Which combination is better? We can answer this question by considering the “wasie” each
combination generates. In Figure 2.9 the shaded portion represents surplus rolls not wide
encugh to fill the required orders. These surplus rolls are referred to as trim foss. We can evalu-
ate the “goodness” of each combination by computing its teim loss. However, because the surplus
rolls may have different widths, we should base the evatuation on the trim loss area rather than
on the nuwnber of surplus rolls. Assuming that the standard roll is of length L feet, we can com-
pute the trim-loss area as follows:

Combination 1:300 (4 X L) + 75 (3 X L) = 1425L t?
Combination 2: 200 (4 X L) + 100 (1 X L) = 900L ft?

These areas account only for the shaded portions in Figure 2.9. Any surplus production of
the 5-, 7- and 9-foot rolls must be considered also in the computation of the trim-loss area. In

20 ft

e o, 9h 4ft
| [

Setting 3

FIGURE 2.9
Trim loss (shaded) for knife settings 1,2, and 3
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combination 1, setting 1 produces a surplus of 300 — 200 = 100 extra 7-foot rolls and setiing 2
produces 75 extra 7-foot rolls. Thus the additional waste area is 175 (7 X L) = 1225L f1*. Com-
bination 2 does not produce surplus rotls of the 7- and 9-foot rolis but setting 3 does produce
200 — 150 = 50 extra S-foot rolls, with an added waste area of 50 (5 X L) = 250L e, As a re-
sult we have

Tolal trim-loss area for combination 1 = 1425L + 12251 = 2650L ft?
Total trim-loss area for combination 2 = 900L + 250L = 1150L fi?

Combination 2 is betfer, because it yields a smaller trim-loss area.

Mathematical Model: The problem can be summarized verbally as determining the knife-set-
ting combinations (variables) that will fill the required orders (constraints) with the least trim-loss
area (objective).
The definition of the variables as given must be translated in a way that the miil operator
can use. Specifically, the variables are defined as the number of standard rolls to be slit according
to a given knife setting. This definition requires idenlifying all possible knife settings as summa-
rized in the following table (settings 1, 2, and 3 are given in Figure 2.9). You should convince .
yourself that settings 4, 5, and 6 are valid and that no “promising” settings have been excluded. !
Remember that a promising setting cannot yield a trim-loss roll of width 5 feet or larger. j

Knife setting

Required Minimum
width (f1) I 2 3 4 5 é number of rolis

5 0 2 2 4 1 0 150

7 1 L 0 0 2 0 200 )

9 1 0 l 0 0 2 300 !
Trim loss per |

foot of length 4 3 1 0 1 2

To express the model mathematically, we define the variables as
x; = number of standard rolls to be slit according to setting j, f = 1,2,...,6

The constraints of the model deal directly with satisfying the demand for rolls.

Number of 5-f1 rolls produced = 205 + 2x5 + 4x4 + X = 150
Number of 7-ft rolls produced = x; + x3 + 2x;5 = 200 ’
Number of 8-ft rolls produced = x; Xy + x5 + 2x5 + 2xg = 300

To construct the objective function, we observe that the total ‘trim loss area is the difference
between the total area of the standard rolls used and the total area representing all the orders.
Thus

Total area of standard rolls = 20L{x, + x; + x3 + x4 + x5 + xg)

Total area of orders = L(150 X 5 + 200 X 7 4+ 300 X 9) = 4850L \
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The objective function then becomes
Minimize z = 20L{x; + x; + x5 + x5 + x5 + x4) — 4850L

Because the length L of the standard roll is a constant, the objective function equivalently
reduces 1o

Minimize z = x; + x3 + x3 + x5 + x5 + xg
The model may thus be written as

Minimize z = X1 + X2 + X3 + x; + Xs + Xg

subject to
Zxy + 2xy + dxg + x5 = 150 (5-ft rolls)
X+ x + 2xs = 200 (7-ft rolis)
x| + x3 + 2xg4 = 300 (9-ft rolis)
xz=0,j=12,...,6
Solution:

The optimum solution calls for cutting 12.5 standard rolls according to setting 4, 100 according to
setting 5, and 150 according to setting 6. The solution is not implementable because x4 is nonin-
teger. We can either use an integer algorithm to solve the problem (see Chapter 9) or round x,
conservatively to 13 rolls.

Remarks. The trim-loss model as presented here assumes that all the feasible knife settings can
be determined in advance. This task may be difficult for large problems, and viable feasible com-
binations may be missed. The problem can be remedied by using an LP model with imbedded in-
teger programs designed to generate promising knife settings on demand until the optimum
solution is found. This algorithm, sometimes referred to as column generation, is detailed in
Comprehensive Problem 7-3, Appendix E on the CD. The method is rooted in the use of (rea-
sonably advanced) linear programming theory, and may serve to refule the argument that, in
practice, it is unnecessary to learn LP theory.

PROBLEM SET 2.3G

*1. Consider the trim-loss model of Example 2.3-9.

(a) H we slit 200 rolls using setting 1 and 100 rolls using setting 3, compute the associat-
ed trim-loss area.

(b) Suppose that the only available standard roll is 15 feet wide. Generate all possible
knife settings for producing 5-, 7-, and 9-foot rolls, and compute the associated trim
loss per foot length.

(¢) Inthe onginal model, if the demand for 7-foot rolls is decreased by 80, what is the
minimum number of standard 20-foot rolls that will be needed to fill the demand for
of all three types of rolls?

(d) In the original model, if the demand for 9-foot rolls is changed to 400, hew many ad-
ditional standard 20-foot rolls will be needed to satisfy the new demang?
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2

Shelf Space Allocation. A grocery store must decide on the shelf space to be allocated 1o
each of five types of breakfast cereals. The maximum daily demand is 100, 85, 140, 80, and 90
boxes, respectively. The shelf space in square inches for the respective boxes is 16,24, 18,22,
and 20. The total available shelf space is 5000 in?. The profit per unit is $1.10, $1.30, $1.08,
$1.25, and $1.20, respectively. Determine the optimal space allocation for the five cereals.
Voting on Issues. In a particular county in the State of Arkansas, four election issues are on
the baltot: Build new highways, increase gun control, increase farm subsidies, and increase
gasoline tax. The county includes 100,000 urban voters, 250,000 suburban voters, and 50,000
rural voters, all with varying degrees of support for and opposition 1o election issues. For
example, rural voters are opposed to gun control and gas tax and in favor of road building
and farm subsidies. The county is planning a TV advertising campaign with a budget of
$100,600 at the cost of $1500 per ad. The following table summarizes the impact of a single
ad in terms of the number of pro and con votes as a function of the different issues:

Expected number of pro (+} and
con { — ) votes per ad

Issue Urban Suburban Rural

New highways ~-30,000 +60,000 +30,000 ;
Gun control +80,000 +30,000 --45,000 :
Smog control +40,000 +10,000 0 ;

Gas tax +90,000 0 —25,000 !

An issue will be adopted if it garners at least 31% of the votes. Which issues will be ap-
proved by voters, and how many ads should be allocated to these issues?

Assembly-Line Balancing. A product is assembled from three different parts. The parts
are manufactured by two departments at different production rates as given in the fol-
lowing table:

Production rate (units/hr)

Capacity
Department (hriwk} Part ] Part 2 Part 3
1 100 8 5 10
2 80 6 12 4

Determine the maximum number of final assembly units that can be produced weekly.
{Hint. Assembly units = min {units of part 1, units of part 2, units of part 3}.

Maximize 7 = min{x,, x;} is equivalent to max z subject to z = x; and 7 = x;.)
Pollution Control. Three types of coal, C1, C2, and C3, are pulverized and mixed together
1o produce 50 tons per hour needed to power a plant for generating electricily. The burn-
ing of coal emits sulfur oxide (in parts per million) which must meet the Environmental
Protection Agency (EPA) specifications of at most 2000 parts per million. The following
table summmarizes the data of the situation:

C1 C2 6]
Sulfur {(pacts per millicn) 2500 1500 1600
Pulverizer capacity (1on/hr) 30 30 30
Cost per ten $30 $35 $33

Determine the optimal mix of the coals.

[



[aaaluraialee S

2.3 Selected LP Applications 65

*6. Traffic Light Control. (Stark and Nicholes, 1972) Automobile traffic from three high-
ways, H1, H2, and H3, must stop and wait for a green light before exiting to a toll
road. The tolls are $3, $4, and $3 for cars exiting from H1, H2, and H3, respectively.
The flow rates from H1, H2, and H3 are 500, 600, and 400 cars per hour. The traffic
light cycle may not exceed 2.2 minutes, and the green light on any highway must be at
least 25 seconds. The yellow light is or for 10 seconds. The toll gate can handle a maxi-
mum of 510 cars per hour. Assuming that no cars move on yellow, determine the opti-
mal green time interval for the three highways that will maximize toll gate revenue
per traffic cycle.
Fitting a Straight Line into Empirical Data (Regression}. In a 10-week typing class for be-

ginners, the average speed per student (in words per minute) as a function of the number
of weeks in class is given in the following table.

|
.

Week, x 1 2 3 4 5 6 7 8 9 10
Words per minute, y 5 9 15 19 21 24 26 30 3 35

Determine the coefficients a and b in the straight-line relationship, ¥ = ax + b, that
best fit the given data. (Hint: Minimize the sum of the absolute value of the deviations be-
tween theoretical y and empirical y. Min [x| is equivalent to min z subject to z = x and
7= —x)

8. Leveling the Terrain for a New Highway. (Stark and Nicholes, 1972) The Arkansas Highway
Department is planning a new 10-mile highway on uneven terrain as shown by the profile in
Figure 2.10. The width of the constrection terrain is approximately 50 yards To simplify the
situation, the terrain profile can be replaced by a step function as shown in the figure. Using
heavy machinery, earth removed from high terrain is hauled to fill low areas. There are also
two burrow pits, I and II, located at the ends of the 10-mile stretch from which additional
carth can be hauled, if needed. Pit I has a capacity of 20,000 cubic yards and pit Il a capacity
of 15,000 cubic yards The costs of removing earth from pits T and I are, respectively, $1.50
and $1.90 per cubic yard. The transportation cost per cubic yard per mile is $.15 and the cost
of using heavy machinery to load hauling trucks is $.20 per cubic yard. This means that a
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Terrain profile for Problem 8
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10.

cubic yard from pit T hauled one mile will cost a total of (1.5 + .20) + 1 X .15 = $1.85and
a cubic yard hauled one mile from a hill to a fill area will cost .20 + 1 X 15 = §.35. Devel-
op a minimum cost plan for leveling the 10-mile stretch.

Milirary Planning. (Shepard and Associates, 1988) The Red Army (R) is trying to invade
the territory defended by the Blue Army (B). Blue has three defense lines and 200 regu-
lar combat units and can draw also on a reserve pocl of 200 units. Red plans to attack on
two fronts, north and south, and Blue has set up three east-west defense lines, [, I, and
IIL The purpose of defense lines I and 11 is to delay the Red Army attack by at least 4
days in each line and to maximize the total duration of the battle. The advance time of

the Red Army is estimated by the following empiricai formula:
Battle duration in days = a + b(M)
Red units

The constants ¢ and b are a function of the defense line and the north/south front as
the following tabie shows:

a b
Fi 7 Hi { i Hr
North front 5 .75 .55 8.8 7.9 10.2

South front 11 1.3 1.5 10.5 8.1 9.2

The Blue Army reserve units can be used in defense lines II and IT only. The alloca-
tion of units by the Red Army to the three defense lines is given in the foHowing table.

Number of Red Army attack units

Defense Line [ Defense Line I Defense Line [IT

Notzth front 30 60 20
South froot 30 40 20

How should Blue allocate its resources among the three defense lines and the
north/south fronts?
Water Quality Managemen:. (Stark and Nicholes, 1972) Four cities discharge waste water
into the same stream. City 1 is upstream, followed downstream by city 2, then city 3, then
city 4. Measured alongside the stream, the cities are approximately 15 miles apart. A
measure of the amount of poliutants in waste water is the BOD (biochemical oxygen de-
mand), which is the weight of oxygen required to stabilize the waste constituent in water,
A higher BOD indicates worse water quality. The Environmental Protection Agency
(EPA) sets a maximum allowable BOD loading, expressed in 1b BOD per gallon. The re-
moval of pollutants from wasie water takes place in two forms: (1) natural decomposition
activity stimulated by the oxygen in the air, and {2) treatment plants at the points of dis-
charge before the waste reaches the stream. The objective is to determine the most eco-
nomical efficiency of each of the four plants that will reduce BOD to acceptable levels.
The maximum possible plant efficiency is 99%.

To demonstrate the computations involved in the process, consider the following de-
finitions for plant 1:

) = Stream flow (gal/hour} on the 15-mile reach 1-2 leading to city 2
py = BOD discharge rate (in ib/hr)

[
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[

X

by

efficiency of plant 1 (<.99)
maximum allowable BOD loading in reach 1-2 (in [b BOD/gal)

To satisfy the BOD loading requirement in reach 1-2, we must have
(1 - x) = b,

In & similar manner, the BOD loading constraint for reach 2-3 takes the form

BOD discharge BOD discharge
(1- rlz)( & ) - ( £

rate in reach 1-2 rate in reach 2-3

) = by
or
(1= rdp(1 — o} + poll — xp) = by

The coefficient ry; {<<1) represents the fraction of waste removed in reach 1-2 by decom-
position. For reach 2-3, the constraint is

(1 = rg)l(1 = rador(1 — 0} + (L = xp)] + a1 = x3) =< D@y

Determine the most economical efficiency for the four plants using the following
data (the fraction of BOD removed by decomposition is 6% for ali four reaches):

Reach 1-2 Reach 2-3 Reach 2-3 Reach 34
(=1 (i =2) (i =3) (=4
©: (gal/hr) 215,000 220,000 200,060 210,000
p; {lb/hr) 500 3.000 6,000 1,000
b; (Ib BOD/gal) 00085 0009 .0008 0008
Treatment cost
($15 BOD removed) 20 25 15 18

11. Loading Structure. (Stark and Nicholes, 1972) The overhead crane with two lifting yokes

in Figure 2.11 is used to transport mixed concrete to a yard for casting concrete barriers.
The concrete bucket hangs at midpoint from the yoke. The crane end rails can support a
maximum of 23 kip each and the yoke cables have a 20-kip capacity each. Determine the
maximum load capacity, W, and W,. (Hint: At equilibrium, the sum of moments about
any point on the girder or yoke is zero.}

Allocation of Aircraft to Routes. Counsider the problem of assigning aircraft to four routes
according to the following data:

Number of daily trips on route

Capacity Number of
Adreraft type {passcngers} aircraft i 2 3 4
1 50 5 3 2 2 1
30 8 4 3 3 2
3 20 10 3 "5 4 2
Daily number
of customers 1000 2000 200 1200
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FIGURE 2.11
Overhead crane with iwo yokes (Problem 11)

The associated costs, inciuding the penalties for losing customers because of space
unavailability, arc

Operating cost ($) per trip on route

Adrcraft type 2 2 3 4
1 1000 1100 1200 1500
2 800 900 1000 1000
3 600 800 8Q¢ 00
Penally {§) per
lost customer 40 50 45 70

Determine the optimum allocation of aircraft to routes and determine the associated
number of trips.

COMPUTER SOLUTION WITH SOLVER AND AMPL

In practice, where typical linear programming models may involve thousands of vari-
ables and constraints, the ouly feasible way to solve such models is to use the comput-
er. This section presents two distinct types of popular software: Excel Solver and
AMPL. Solver is particularly appealing to spreadsheet users. AMPL is an algebraic
modeling language that, hke any other programming language, requires more exper-
tise. Nevertheless, AMPL, and other similar languages,’ offer great flexibility in model-
ing and executing large and complex LP models. Although the preseatation in this
section concentrates on LPs, both AMPL and Solver can be used with integer and non-
linear programs, as will be shown later in the book.

*Other known commercial packages include AIMMS, GAMS, LINGO, MPL, OPL Studio, and Xpress-Mosel.

e
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2.4.1 LP Solution with Excel! Solver

In Excel Solver, the spreadsheet is the input and output medium for the LP. Figure 2.12
shows the layout of the data for the Reddy Mikks model (file solverRM1.xls). The top
of the figure includes four types of mformation: (1) input data cells (shaded areas,
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FIGURE 2.12
Defining the Reddy Mikks model with Excel Solver (file sotverRM1.xls)
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B5:C9 and F6:F9), (2) cells representing the variables and the objective function we
seek to evaluate (solid rectangle cells, B13:D13), (3) algebraic definitions of the objec-
tive function and the left-hand side of the constraints (dashed rectangle cells, D5:1D9),
and (4) cells that provides explanatory names or symbols. Solver requires the first
three types only. The fourth type enhances the readability of the model and serves no
other purpose. The relative positioning of the four types of information on the spread-
sheet need not follow the layout shown in Figure 2.12. For example, the cells defining
the objective function and the variables need not be contiguous, nor do they have to be
placed below the problem, What is important is that we know where they are so they
can be referenced by Solver. Nonetheless, it is a good idea to use a format similar to the
one suggested in Figure 2.12, because it makes the mode] more readable.

How does Solver link to the spreadsheet data? First we provide equivalent “alge-
braic” definitions of the objective function and the left-hand side of the constraints
using the input data (shaded celis B5:C9 and F6:F9) and the objective function and
variables (solid rectangle cells B13:D13), and then we place the resulting formutlas in
the appropriate cells of the dashed rectangle D5:D9. The following table shows the
original LP functions and their placement in the appropriate cells:

Algebraic expression Spreadsheet formula Entered in cell
Objective, z 5x; + 4x, =B5*$B§13+C3*3CH13 D5
Constraing 1 6x) + 4xz =B6*$BE13+C6*$CH13 Dé
Constraint 2 X+ 2x, =B7*3B$13+C7*SC513 D7
Constraint 3 —x + x, =B8*$BE13I+CB*$CEL3 D8
Constraint 4 0x, + %, =B9s$BS13+CI*SCS13 D9

Actually, you only need to enter the formula for cell D5 and then copy it into cells
D6:D9. To do so correctly, the fixed references $B$13 and $C$13 representing xy and x;
must be used. For [arger linear programs, it is more efficient to enter

=SUMPRODUCT(B5:C5,$B$13:5C$13)

n cell D5 and copy it into cells D6:D9.

All the elements of the LP model are now ready (o be linked with Solver. From
Excel’s Tools menu, select Solver* to open the Solver Parameters dialogue box shown
in the middle of Figure 2.12. First, you define the objective function, z, and the sense of
optimization by entering the following data:

Set Target Cell: $D35
Equal To: © Max
By Changing Cells: $B§13:$C$13

This information tells Solver that the variables defined by cells $8$13 and $C$13 are
determined by maximizing the objective function in cell $D§5.

1€ Solver does not appear under Tools, ctick Add-ins in the same menu and check Solver Add-in, then
click OK.
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The next step 1s to set up the constraints of the problems by clicking Add in the
Solver Parameters dialogue box. The Add Censtraint dialogue box will be displayed
(see the bottom of Figure 2.12) to facilitate entering the elements of the constraints
(left-hand side, inequality type, and right-hand side) as®

$D3%6:3D$9<=3F$6:3F$9

A convenient substitute to typing in the cell ranges is to highlight ceils D6:D9 to enter
the left-hand sides and then cells F6:F9 to enter the right-hand sides. The same proce-
dure can be used with Target Cell.

The only remaining constraints are the nonnegativity restrictions, which are
added to the mode] by clicking Add in the Add Constraint dialogue box to enter

$B$13:3C813>=0

Another way to enter the nonnegative constraints is to click Options on the Solver Pa-
rameters dialogue box to access the Solver Options dialogue box (see Figure 2.13) and
then check [ 'As_sume Non-Negative . While you are in the Solver Options box, you

also need to check [ Assume Linear Model .

In general, the remaining default settings in Solver Options need not be changed.
However, the default precision of .000001 may be set too “high” for some problems,
and Solver may return the message “Solver could not find a feasible solution” when in
fact the problem does have a feasible solution. In such cases, the precision needs to be

adjusted to reflect less precision. If the same message persists, then the problem may be
infeasible.
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. Bredision: 0.000001 .| toad Model...
Tororce: s %" sovepesdl ]

Comefgence |00001 1 _' { ETe— -] ]

. . Amme Uneer todel ;- D Use Automahc Scallnu
' .éAssume Tiontiegative] - -] Show Iteration Results’

_;-Estirnates '---—-—1 irDenvatrves*-w*H] vﬁeard'l e ey
@Tangent I i @Fonva.rd - l @Newton .
Og.iadratlc ' Og@qai - LOConJuuaba

[ . - q_:_..h.z ...................... ot

FIGURE 2.13

Seolver options dialogue box

%You will notice that in the Add Constraint dialogue box (Figure 2.12), the middie box specifying the type of
inequalities { <= and >=) has two additional options, int and bin, which stand for integer and binary and
can be used with integer programs 1o restrict variables 1o integer or binary values (see Chapter 9).
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For readability, you can use descriptive Excel range names instead of cell names. A
range 1s created by highlighting the desired cells, typing the range name in the top left
box of the sheet, and then pressing Return. Figure 2.14 {file solverRM?2.xls) provides
the details with a summary of the range names used in the model. You should contrast
file solverRM2.xls with file solverRM1.xls to see how ranges are used in the formulas.

To solve the problem, click Solve on Solver Parameters (Figure 2.14). A new di-
alogue box, Solver Results, will then give the status of the solution. If the model setup
is correct, the optimmum value of z will appear in cell DS and the values of x( and x; will
go to cells B13 and C13, respectively. For convenience, we use cell D13 to exhibit the
optimum value of z by entering the formula =D5 in cell D13 to display the entire opti-
mum solution in contiguous cells.

If a problem has no feasible solution, Solver will issue the explicit message
“Solver could not find a feasible solution.” If the optimal objective value is unbounded,
Solver will issue the somewhat ambiguous message “The Set Cell values do not con-
verge.” In either case, the message indicates that there is something wrong with the for-
mulation of the model, as will be discussed in Section 3.5.

The Solver Results dialogue box will give you the opportunity to request further
details about the solution, including the important sensitivity analysis report. We will
discuss these additional results in Section 3.6.4.

The solution of the Reddy Mikks by Solver is straightforward. Other models may
require a “bit of ingenuity” before they can be defined in a convenient manner. A class
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of LP models that falls in this category deals with network optimization, as will be
demonstrated in Chapter 6.

PROBLEM SET 2.4A

1. Modify the Reddy Mikks Solver model of Figure 2.12 to account for a third typelof paint
named “marine.” Requirements per ton of raw materials 1 and 2 are .5 and .75 ton, re-
spectively. The daily demand for the new paint lies between .5 ton and 1.5 tons. The profit
per ton is §3.5 (thousand).

2. Develop the Excel Solver model for the following problems:

(a) The diet model of Example 2.2-2.
(b) Problem 16, Set 2.2a
(c) The urban renewal model of Example 2.3-1.

*(dy The currency arbitrage model of Example 2.3-2. (Hinf: You will find it convenient to
use the entire cutrency conversion matrix rather than the top diagonal elements
only. Of course, you generate the bottom diagonal elements by using appropriate
Excel formulas.)

(e) The multi-period production-inventory model of Example 2.3-5.

LP Solution with AMPL®

This section provides a brief introduction to AMPL. The material in Appendix A pro-
vides detailed coverage of AMPL syntax and will be cross-referenced opportunely
with the presentation in this section as well as with other AMPL presentations
throughout the book.

Four examples are presented here: The first two deal with the basics of AMPL,
and the remaining two demonstrate more advanced usages to make a case for the ad-
vantages of AMPL.

Reddy Mikks Problem-—a Rudimentary Model. AMPL provides a facility for modeling
an LP in a rudimentary long-hand format. Figure 2.15 gives the self-explanatory code

var X1 »>=0;
wvar x2 »=0;
mawimize z: S*xI+4*x2;
subject to
cl: 6*x1+4*x2<=24;

c2: x1l+2%x2<=6;

c3: -x1l+x2<=1;

cd: x2<=2; Figure 2,15
solve; Rudimentary AMPL model for the Reddy Mikks problem
display z,xl,x2: (file ampIRM1.txt)

SFor convenience, the AMPL student version, provided by AMPL Optimization LLC with instructions, is on
the accompanying CD. Future updates may be downloaded from www.ampl.com. AMPL uses line com-
mands and operates in a2 DOS (rather than Windows) environment. A recent beta version of a Windows in-
terface can be found in www. OptiRisk-Systems.com.
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for the Reddy Mikks model (file amplRM1.ixt). All reserved keywords are in bold. All
other names are user generated. The objective function and each of the constraints must
be given a distinct user-generated name followed by a colon. Each statement closes with a
semi-colon.

This rudimentary AMPL model is too specific in the sense that it requires devel-
oping a new code each time the data of the problem are changed. For practical prob-
lems with hundreds (even thousands) of variables and constraints, this long-hand
format is cumbersome. AMPL alleviates this difficuity by dividing the problem into
two components: (1) A general model that expresses the problem algebraically for
any desired number of variables and constraints, and (2) specific data that drive the
algebraic model. We will use the Reddy Mikks model to demounstrate the basic ideas
of AMPL.

Reddy Mikks Problem—an Algebraic Model. Figure 2.16 lists the statements of the
model (file amplRM2.ixt). The file must be strictly text (ASCII). Comments are
preceded with # and may appear anywhere in the model. The language is case sensitive
and all its keywords (with few exceptions) must be in lower case. (Section A.2 provides
more details.)

i it algebraic model
param m;

param n;

param ¢{1..n};

param b{l. . m};

param a{l..m,1..n};

var x{1..n)>=0;
maximize z: sum{3j in 1l..n}lc{ji)*xI[j]);

subject to restr{i in 1..m}:
sum{j in 1..n}al(i,jl*x(jl<=bli]);

N specify model data
data;
param n:=32;
param m:=4;
param ¢:=1 5 2 4
param b:=1 24 2 6 3 1 4 2;
param a: 1 2 :=
1 1 4
2 1 2
3 -1 1
4 0 1
T L e T solve the problewm

solve;
display z, X;

FIGURE 2.16
AMPFL model of the Reddy Mikks problem with input data (file amplRM2.txt)

rmmwp.m.m_r,w
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\ The algebraic model in AMPL views the general Reddy Mikks problem in the
following generic format

M
Maximize z: Ecjxj
i=1

I

subject torestrz D agx; < b,i=1,2,...,m
j=1

it
xz0,;=12,...,n

It assumes that the problem has n variables and m constraints. It gives the objective
function and constraint i the (arbitrary) names z and restr;. The rest of the parameters
¢, b;, and a;; are self-explanatory.

The model starts with the param statements that declare m, n, ¢, b, and g
as parameters (or constants) whose specific values are given in the input data sec-
tion of the model. It translates ¢;{j = 1,2,...,n) as c(t..n}, b;(i = 1,2,...,m) as
b{i..m},and a;{i =1,2,...,m,j=1,2,...,n) as a{1l..m, 1. .n}. Next, the vari-
ables x;(j = 1,2,..., n) together with the nonnegativity restriction are defined by
the var statement

var x{1..n}»>=0;

If >=0 is removed from the definition of Xj, then the variable 1s assumed unrestricted. The
notation in {) represents the set of subscripts over which a param or a var is defined.

After defining all the parameters and the variables, we can develop the model it-
self. The objective function and constraints must each carry a distinct user-defined
name followed by a colon (:). In the Reddy Mikks model the objective is given the
name z: preceded by maximize, as the following AMPL statement states:

maximize z: sum{j in 1..n}lcijli*x[jl;

"
The statement 1s a direct translation of maximize z = chxj (with = replaced by :).
=1
Note the use of the brackets (] for representing the subscripts.
Constraint { is given the root name restr indexed over the set (1. .m}:

restr{i in i..m}:sum(j in 1..n)ali,ji*x[j)<=b(i};

n

The statement is a direct translation of Ea,-jxj = b;. The keywords subject toare
i=1

optional. This general model may now be used to solve any problem with any set of

input data representing any number of constraints m and any number of variables n.

The data; section allows tailoring the model to the specific Reddy Mikks prob-
lem. Thus, param n:=2; and param m:=4; tell AMPL that the problem has 2 variables
and 4 constraints. Note that the compound operator := must be used and that the
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staternent must start with the keyword param. For the single-subscripted parameter c,
each element is represented by the subscript j followed by ¢; separated by a blank
space. Thus, the two values ¢; = S and ¢, = 4 translate to

param c:= 1 5 2 4;

The data for parameter b are entered in & similar manner.

For the double-subscripted parameter a, the top line defines the subscript j, and

the subscript i is entered at the start of each row as

param a: 1 2 1=
1 [ 4
2 1 2
3 -1 1
4 0 1;

In effect, the data a;; read as a two-dimensional matrix with its rows designating i and
its columns designating j. Note that a semicolon is needed only at the end of all g;; data.
The mode] and its data are now ready. The command solve; invokes the solu-

tion and the command display z, x; provides the solution.
To execute the model, first invoke AMPL (by clicking ampl.exe in the AMPL. di-
rectory). At the ampl prompt, enter the following model command, then press Return:

ampl : model AmplRM2Z.txL;

The output of the system will then appear on the screen as follows:

MINGCS 5.5: Optimal solution found.
2 iterations, objective = 21

z = 21
x[*):=
1 =23

2 =115

The bottom four lines are the result of executing display z.x;.

Actually, AMPL allows separating the algebraic model and the data into two inde-
pendent files. This arrangernent is advisable because once the model has been developed,
only the data file needs to be changed. (See the end of Section A2 for details.) In this
book, we elect not to separate the model and data files, mainly for reasons of compactness.

The Arbitrage Problem. The simple Reddy Mikks model introduces some of the basic
elements of AMPL. The more complex arbitrage model of Example 2.3-2 offers the
opportunity to introduce additional AMPL capabilities that include: (1) mmposing
conditions on the elements of a sef, (2) use of if then else to represent conditional
values, (3) use of computed parameters, and (4) use of a simple print statement to
retrieve output. These points are also discussed in more detail in Appendix A.

e
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param inCurrency; #initial amount I

param outCurrency; fmaximized holding vy

param I; #nbr of currencies

param r{i in 1..n.j in 1..n:i<=j}; #above-diagonal rates
param I; #initial amt of inCurrency
param maxTransaction{l..n}; #limit on transaction amt
var x{i in 1..n.j in 1..n}>=0; famt of i converted to j
var y>=0; #max amt of outCurrency

maximize z: y;
subject to
rl{i in 1..n.3 in 1..n):x[i,jl<=maxTransaction{i];
r2{i in l..n}:{if i=inCurrency then I else 0}+
sum{k in 1..n}(if k<i chen zr[k,i] else 1l/rl(i.k}}*x(k,il=
{if i=outCurrency then y else QO}+sum(j in 1..n}x[i,j]:
e - input data
data;
param inCurrency=1l:
param outCurrency=1:
param n:=5;

b 5 euro pound yen KD

param r: 1 2 3 4 5:=
1 1 . 769 .625 105 .342  #%
2 1 -811 137 .445 deuro
3 . 1 169 .543  fipound
4 . . . 1 -0032 #yen
5 1 #KD

param I:= 5;

param maxTransaction:sl 5 2 3 3 3.5 4 100 5 2.8;

B e e s Solution command

solve;

display z,y.x>file2.our;
print *rate of return =",trunc(100%(z-I)/I,4}, "% ">file2. out;

FIGURE 2.17
AMPL model of the Arbitrage problem (file amplEx2.3-2.txt)

Figure 2.17 (file amplEx2.3-2.txt) gives the AMPL code for the arbitrage prob-
tem. The model is general in the sense that it can be used to maximize the final holdings
y of any currency, pamed outCurrency, starting with an initial amount 1 of another
currency, named inCurrency. Additionally, any number of currencies, n, can be in-
volved in the arbitrage process.

The exchange rates are defined as

param r{i in 1..mn,j in 1,.nzi<=3};

The definition gives only the diagonal and above-diagonal elements by imposing the
condition i<=7j (preceded by a colon) on the set {i in 1..n,3j in 1..n).With this
definition, reciprocals are used to compute the below-diagonal rates, as will be shown
shortly.
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The variable x;;, representing the amount of currency { converted to currency j, 1s
defined as

var x{i in 1..n,3 in 1..n)>=0;

The model has two sets of constraints: The first set with the root name ri sets the
limits on the amounts of any currency conversion transaction by using the statement

r1{i in 1..n,3j in 1..n}: x[i,jl<=maxTransaction[il]:;

The second set of constraints with the root name r2 is a translation of the restriction
(Input to currency i} = (Output from currency f)

Its statement is given as

r2{1 in 1..n}:
{if i=inCurrency then I else 0)+
sure{k in 1..n)(if k<i then r[k,i] else 1/z[i,k])*x[k,1?
={if i=outCurrency then y else 0)+sum{j in 1..n}x[i.3}:

This type of constraints is ideal for the use of the special construct if then elseto
specify conditional values. In the left-hand side of the constraint, the expression

{if i=inCurrency then I else 0}

says that in the constraint for the input currency (i=inCurrency) there is an external
mput 1, else the external input is zero. Next, the expression

sum{k in 1..n)(if k<i then rik,i] else L1/x({i, k]})*x[k,i]

computes the input funds from other currency converted to the input currency. If you
review Example 2.3-2 you will notice that when k<i, the conversion uses the above-
diagonal elements of the exchange rate r. Otherwise, the row reciprocal is used for the i
below-diagonal elements (diagonal elements are 1). This is precisely what if then f
else does. (See Section A.3 for details.)

The if-expression in the right-hand side of constraint r2 can be explained in a

similar manner—namely,

{if i=outCurrency then y else 0)

B TSP

says that the external output is y for cutCurrency and zero for all others.
We can enhance the readability of constraints r2 by defining the following
computed parameter (see Section A.3) that defines the entire exchange rate table:

Param ratef{k in 1..a.i in 1..n}
={if k<i then rlk,i} else 1/xr{i.k]))

;
z
i‘
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In this case, constraints r2 become

r2{i in 1..n}:
{if i=inCurrency then I else 0}+ sum(k in 1..n}rate(k,i)*x[k, i}
=(if i=ourCurrency then y else 0)+sum{j in 1..n}x[i,3);

In the data; section, inCurrency and outCurrency each equal 1, which means
that the problem is seeking the maximum dollar output using an initial amount of $5
million. In general, inCurrency and outCurrency may designate any distinct curren-
cies. For example, setting inCurrency equal to 2 and outCurrency equal to 4 maxi-
mizes the yen output given a 5 million euros initial investment.

The unspecified entries of param r are flagged in AMPL with dots (.). These
values are then overridden either by using the reciprocal as shown in Figure 2.17 or
through the use of the computed parameter rate as shown above. The alternative to
using dots is to unnecessarily compute and enter the below-diagonal elements as
data.

The display statement sends the output to file file2.out instead of defaulting it to
the screen. The print statement computes and truncates the rate of return and sends
the output to file file2.out. The print statement can also be formatted using printf,
just as in any higher level programming language. (See Section A.5.2 for details.)

It is important to notice that input data in AMPL need not be hard-coded in the
model, as they can be retrieved from external files, spreadsheets, and databases (see
Section A.5 for details). This is crucial in the arbitrage model, where the volatile ex-
change rates must often be accepted within less than 10 seconds. By allowing the
AMPL model to receive its data from a database that automatically updates the ex-
change rates, the model can provide timely optimal solutions.

The Bus Scheduling Problem. The bus scheduling problem of Example 2.3-8 provides
an interesting modeling situation in AMPL. Of course, we can always use a two-
subscripted parameter, similar to parameter a in the Reddy Mikks model in Section 2.4.2
(Figure 2.16), but this may be cumbersome in this case. Instead, we can take advantage of
the special structure of the constraints and use conditional expressions to represent them
implicitly.

The left-hand side of constraint 1 is x; + x,,, where /= is the total number of pe-
riods in a 24-hour day (= 6 in the preseant example). For the remaining constraints, the
left-hand side takes the form x;,—; + x,{ = 2,3,...,m. Using if then else (as we
did in the arbitrage problem), all m constraints can be represented compactly by one
statement as shown in Figure 2.18 (file amplEx2.3-8.txt). This representation is superi-
or to defining the left-hand side of the constraints as an explicit parameter.

AMPL offers a wide range of programming capabilities. For example, the
input/output data can be secured from/sent to external files, spreadsheets, and data-
bases and the model can be executed interactively for a wide variety of options that
allow testing different scenarios. The details are given in Appendix A. Also, many
AMPL models are presented throughout the book with cross references to the materi-
al in Appendix A to assist you in understanding these options.
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param m;
param min_nbr_buses{l..m};
var x_nbr_buses(l..m) >= 0;
minimize teot_nbr buses: sum {i in 1..m} x_nbr_buses([i};
subject to constr_nbr{i in 1..m}:
if i=1 then
*x_nbr_buses [i]+x_nbr_buses{m]
else
¥x_nbr_buses[i-1ll+x_nbr_buses(i} >= =min_nbxr_buses(i];
data;
param m:=§;
param min_nbr buses:= 1 4 2 8 3 10 4 7 5 12 & 4;
solve;
display tot_nbr_buses, X _nbr buses;
FIGURE 2.18
AMPL modei of the bus scheduling problem of Example 2.3-8 (file amplEx2.3-8.txt)
PROBLEM SET 2.4B
1. In the Reddy Mikks model, suppose that a third type of paint, named “marine,” is pro-
duced. The requirements per ton of raw materials M1 and M2 are .5 and .75 ton, respec-
tively. The daily demand for the new paint lies between .5 ton and 1.5 tons and the profit
per ton is $3.5 {thousand). Modify the Excel Solver model solverRM2.xls and the AMPL
model amplRM2.txt to account for the new situation and determine the optimum solu-
tion. Compare the additional effort associated with each modification.
. Develop AMPL models for the foliowing problems:
(a) The diet problem of Exampie 2.2-2 and find the optimum solution.
(b) Problem 4, Set 2.3b.
*#{(¢) Problem 7, Set 2.3d.
(d) Problem 7,Set 2.3p.
(e) Problem 9,Set 2.3g.
*(f) Problem 10, Set 2.3g.
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CHAPTER 3

The SimplexMethod
and Sensitivity Analysis

Chapter Guide. This chapter details the simplex method for solving the general LP
problem. It also explains how simplex-based sensitivity analysis is used to provide im-
portant economic mterpretations about the optimum solution, including the dual prices
and the reduced cost.

The simplex method computations are particularly tedious, repetitive, and, above
all, boring. As you do these computations, you should not lose track of the big picture;
namely, the simplex method attempts to move from one corner point of the solution
space to a better corner point until the optimum is found. To assist you in this regard,
TORAs interactive user-guided module (with instant feedback) allows you to decide
how the computations should proceed while relieving you of the burden of the tedious
computations. In this manner, you get to understand the concepts without being over-
whelmed by the computational details. Rest assured that once you have learned how
the simplex method works (and it is important that you do understand the concepts),
computers will carry out the tedious work and you will never again need to solve ao LP
manuatly.

Throughout my teaching experience, I have noticed that while students can easi-
ly carry out the tedious simplex method computations, in the end, some cannot tell why
they are doing them or what the solution is. To assist in overcoming this potential diffi-
culty, the material in the chapter stresses the interpretation of each iteration in terms of
the solution to the original problem.

When you complete the material in this chapter, you will be in a position to read
and interpret the output reports provided by commercial software. The last section de-
scribes how these reports are generated in AMPL, Excel Solver, and TORA.

This chapter includes a summary of 1 real-life application, 11 solved examples,
1 AMPL model, 1 Solver model, 1 TORA model, 107 end-of-section problems, and 3
cases. The cases are in Appendix E on the CD. The AMPL/Excel/Solver/TORA. pro-
grams are in folder ch3Files.
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Real Life Application—Optimization of Heart Valve Production

Biological heart valves in different sizes are bioprostheses manufactured from porcine
hearts for human implantation. On the supply side, porcine hearts cannot be “pro-
duced” to specific sizes. Moreover, the exact size of a manufactured valve cannot be de-
termined until the biological component of pig heart has been processed. As a result,
some sizes may be overstocked and others understocked. A linear programming model
was developed to reduce overstocked sizes and increase understocked sizes. The re-
sulting savings exceeded $1,476,000 in 1981, the year the study was made. The details of
this study are presented in Case 2, Chapter 24 on the CD.

LP MODEL IN EQUATION FORM

The development of the simplex method computations is facilitated by imposing two
requirements on the constraints of the problem:

1. All the constraints (with the exception of the nonnegativity of the variables) are
equations with nonnegative right-hand side.

2. All the vanables are nonnegative.

These two requirements are imposed here primarily to standardize and streamline the
simplex method calculations, It is important to know that all commercial packages
(and TORA) directly accept inequality constraints, nonnegative right-hand side, and
unrestricted variables. Any necessary preconditioning of the model is done internally
in the software before the simplex method solves the problem.

Converting Inequalities into Equations with Nonnegative
Right-Hand Side

In (=) constraints, the right-hand side can be thought of as representing the limit on
the availability of a resource, in which case the left-hand side would represent the
usage of this limited resource by the activities (variables) of the model. The difference
between the right-hand side and the left-hand side of the (=) constraint thus yields the
unused or slack amount of the resource.

To convert a {=)-inequality to an equation, a nonnegative slack variable is added
to the left-hand side of the constraint. For example, in the Reddy Mikks model (Example
2.1-1), the constraint associated with the use of raw material M1 is given as

6x1 + 4x2 = 24

Defining s, as the slack or unused amount of M1, the constraint can be converted to
the following equation:

6x, +4dx, + 5, =24,5y =2 0

Next,a (=)-constraint sets a lower limit on the activities of the LP model, so that
the amount by which the left-hand side exceeds the minimum limit represents a
surplus. The conversion from (=) to (=) is achieved by subtracting a nonnegative
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surplus variable from the left-hand side of the inequality. For example, in the diet
model (Example 2.2-2), the constraint representing the minimum feed requirements is

x1+x22800

Defining S) as the surplus variable, the constraint can be converted to the following
equation

x1+x2—81=800,.5'120

The only remaining requirement is for the right-hand side of the resulting equa-
tion to be nonnegative. The condition can always be satisfied by multiplying both sides
of the resulting equation by —1, where necessary. For example, the constraint

—X + X2 = —3
1s equivalent to the equation
_x1+x2+Sl="3,3120

Now, multiplying both sides by —1 will render a nonnegative right-hand side, as de-
sired—that 1s,

xl—x2—51=3

PROBLEM SET 3.1A

*1. In the Reddy Mikks model (Example 2.2-1), consider the feasible solution x; = 3 tons

and x; = 1 ton. Determine the value of the associated slacks for raw materials M1 and
M2.

2, Inthe diet model (Example 2.2-2), determine the surphus amount of feed consisting of
500 1b of corn and 600 1b of soybean meal.
3. Consider the following inequality

lel - 3X2 = _5

Show that multiplying both sides of the inequality by —1 and then converting the result-
ing inequality into an equation is the same as converting it ficst to an equation and then
mulitiplying both sides by —1.

*4, Two different products, P1 and P2, can be manufactured by one or both of two different
machines, M1 and M2. The unit processing time of either product on either machine is
the same. The daily capacity of machine M1 is 200 units (of either P1 or £2, or a mixture
of both) and the daily capacity of machine M2 s 250 units. The shop supervisor wants to
balance the production schedule of the two machines such that the total number of units
produced on one machine is within 5 units of the number produced on the other. The
profit per unit of P1 is $10 and that of P2 js §15. Set up the problem as an LP in equation
form.

5. Show how the following abjective function can be presented in equation form:
Minimize z = max{|x; — x; + 3x3/, |-x, + 3x; — &3]}
Xy, Xz, X3 =0

(Hint: |a] = bisequivalenttoa =< banda = —b.)
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6. Show that the m equations:

n
Eaﬁxi = b{,f =1,2,....,m
i=1

are equivaient to the following m + 1 inequalities:

H
zaﬁx}; =p,i=1,2,...,m
=1

| i(éaq)x; = gb,-

=

Dealing with Unrestricted Variables

In Example 2.3-6 we presented a multiperiod production smoothing model in which
the workforce at the start of each period is adjusted up or down depending on the de-
mand for that period. Specifically, if x; (= 0) is the workforce size in period i, then
%41 (= 0) the workforce size in period i + 1 can be expressed as

Xy = X+ ying

The variable y;,; must be unrestricted in sign to allow x;4, to increase or decrease rel-
ative to x; depending on whether workers are hired or fired, respectively.

As we will see shortly, the simpiex method computations require all the variables
be nonnegative. We can always account for this requirement by using the substitution

Yie1 = Yisr — Yier, where yi,, = Oand yjo; = 0

To show how this substitution works, suppose that in pertod 1 the workforce is x; = 20
workers and that the workforce in period 2 will be increased by 5 to reach 25 workers.
In terms of the variables y; and y3, this will be equivalent to y; = 5 and y3 = 0 or
y» =5 — 0 = 5. Similarly, if the workforce in period 2 is reduced to 16, then we have
y; = 0and y3 = 4,0r y, = 0 — 4 = —4, The substitution also allows for the possibili-
ty of no change in the workforce by letting both variables assume a zero value.

You probably are wondering about the possibility that both y3 and y; may as-
sume positive values simultaneously. Intuitively, as we explained in Example 2.3-6, this
cannot happen, because it means that we can hire and fire a worker at the same time.
This intuition is also supported by a mathematical proof that shows that, in any simplex
method solution, it is impossible that both variables will assume positive values simul-
taneously.

PROBLEM SET 3.1B

1. McBurger fast-food restaurant sells quarter-pounders and cheeseburgers. A quarter-
pounder uses a quarter of a pound of meat, and a cheeseburger uses only .2 1b. The
restaurant starts the day with 200 lb of meat but may order more at an additional cost of
25 cents per pound to cover the delivery cost. Any surplus meat at the end of the day is
donated to charity. McBurger’s profits are 20 cents for a quarter-pounder and 15 ceats for
a cheeseburger. McBurger does not expect to sell more than 900 sandwiches in any one
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day. How many of each type sandwich should McBurger plan for the day? Solve the
problem using TORA, Solver, or AMPL.

2. Two products are manufactured in a machining center. The productions times per unit of
products 1 and 2 are 10 and 12 minutes, respectively. The total regular machine time is
2500 minutes per day. In any one day, the manufacturer can produce between 150 and
200 units of product 1, but no more than 45 units of product 2. Overtime may be used to
meet the demand at an additional cost of $.50 per minute. Assuming that the unit profits
for products 1 and 2 are $6.00 and $7.50, respectively, formulate the problem as an LP
madel, then solve with TORA, Solver, or AMPL 10 determine the optimum production
level for each product as well as any overtime needed in the center.

*3, JoShop manufactures three products whose unit profits are 32, $5, and $3, respectively.
The company has budgeted 80 hours of [abor time and 65 hours of machine time for the
production of three products. The labor requirements per unit of products 1,2, and 3 are
2,1, and 2 hours, respectively. The corresponding machine-time requirements per unit are
1,1, and 2 hours. JoShop regards the budgeted labor and machine hours as goals that may
be exceeded, if necessary, but at the additional cost of $15 per labor hour and $10 per ma-
chine hour, Formulate the problem as an LP, and determine its optimum solution using
TORA, Solver, or AMPL,

4. In an LP in which there are several unrestricted variables, a transformation of the type
X; = X7 = X}, %}, x} = 0 will double the corresponding number of nonnegative vari-
ables. We can, instead, replace k unrestricted variables with exactly & + 1 nonnegative
variables by using the substitution x; = x; — w, x;, w = 0. Use TORA, Solver, or AMPL
10 show that the two methods produce the same solution for the following 1.P:

Maximize z = ~2xy + 3x; — 2x3
subject to
4x — x3 — 5x3 =10
2x; + 3xp + 2xy = 12

Xx; = 0, x5, x5 unrestricted

TRANSITION FROM GRAPHICAL TO ALGEBRAIC SOLUTION

The ideas conveyed by the graphical LP solution in Section 2.2 lay the foundation for the
development of the algebraic simplex method. Figure 3.1 draws a paralle] between the
two methods. In the graphical method, the solution space is delineated by the half-
spaces representing the constraints, and in the simplex method the solution space is
represented by m simultaneous linear equations and n nonnegative variables.

We can see visually why the graphical solution space has an infinite number of so-
lution points, but how can we draw a similar conclusion from the algebraic representa-
tion of the solution space? The answer is that in the algebraic representation the number
of equations m is always less than or equal to the number of variables n.! If m = n, and
the equations are consistent, the system has only one solution; but if m < n {which

'If the number of equations m is larger than the number of variables n, then at least i — 2 equations must
be redundant.
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FIGURE 3.1
Transition from graphical to algebraic sclution

represents the majority of LPs), then the system of equations, again if consistent, will
yield an infinite number of solutions. To provide a simple illustration, the equation
=2 has m = n =1, and the solution is obviously unique. But, the equation
x+y=1hasm=1and n =2, and it yields an infinite number of solutions (any
point on the straight line x + y = 1 is a solution).
Having shown how the LP solution space is represented algebraically, the candi-
dates for the optimum (i.e., corner points) are determined from the simultaneous lin-
ear equations in the following manner:

Algebraic Determination of Corner Points.

In aset of m X nequations (m < n), if weset n ~ m variables equal to zero and then
solve the m equations for the remaining m variables, the resulting solution, if unique,
is called a basic solution and must cortespond to a (feasible or infeasible) corner point
of the solution space. This means that the maxirmum number of corner points is

nl

cr, =

ml(n — m)!

* The following example demonstrates the procedure.

e ——— e e

- e—— g

| gl pclet Lot et o e A



2

1t

o e ———— i A R o - kh . Aim it i

PRI AT g =
H

3.2 Transition from Graphical to Algebraic Solution

87

Example 3.2-1
Consider the following LP with two variables:
Maximize z = 2x; + 3x3

subject to

le + Xy =4
X) + sz =5
Xy, X3 = 0

Figure 3.2 provides the graphical solution space for the problem.
Algebraically, the solution space of the LP is represented as:

2x)+ x3t g =4
x, + 2x; + 5 =5

X1, Xy, 51, 82 = 0

The system has s = 2 equations and n = 4 variables. Thus, according to the given rule, the cor-
ner points can be determined algebraically by setting n — m = 4 — 2 = 2 variables equal to

FIGURE 3.2
LP solution space of Exampie 3.2-1

X2

Xy
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zero and then solving for the remaining m = 2 variables. For example, if we set x| = 0 and
x; = 0, the equations provide the unique (basic) solution

§=4,5%=35

This solution corresponds to point A in Figure 3.2 (convince yourself that 5; = 4 and 5; = 5 at
pomt A). Another point can be determined by setting s, = 0 and 5; = 0 and then solving the two

equations
2+ x; =4

Xy +2x; =35

This yields the basic solution (x, = 1, x; = 2}, which is point C in Figure 3.2.

You probably are woadering how one can decide whickh n — m variables should be set
equal to zero to target a specific corner point. Without the benefit of the graphical solution
(which is available only for two or three variables), we cannot say which (» — m) zero variables
are associated with which corner point. But that does not prevent us from enumerating all the
corner points of the solution space. Simply consider a// combinations in which # — m variables
are set to zero and solve the resulting equations. Once done, the optimum solution is the feasible
basic solution (corner point) that yields the best objective value.

In the present example we have C3 = -2-_]% = 6 corner points. Looking at Figure 3.2, we can
immediately spot the four corner points A, B, C, and D. Where, then, are the remaining two? In
fact, points E and F also are corner points for the problem, but they are infeasible because they do
not satisfy all the constraints. These infeasible comer points are not candidates for the optimum.

To summarize the transition from the graphical to the algebraic solution, the zero n — m
vartables are known as nonbasic variables. The remaining m variables are called basic variables
and their solution (obtained by solving the m equations) is teferred to as basic solution. The fol-
lowing table provides all the basic and nonbasic sotutions of the current example.

Noenbasic {zero) Agssociated Objective
variables Basic variables Basic solution coraer poini Feasible? value, z
()-'], Iz) (51, 51} (41 5) A Yes G
(xl:'fl) (x?,! 52) (41 _-3) F NO -
(xy, 5) {x9,5) (2.5,1.5) B Yes 7.5
(xz! ‘gl) (‘rlv 52) (2| 3) D Yes 4
(x2.52) (21, 51) (3, -6) E No —
(s1,52) (x1,x3) 1,2 c Yes 8
{optimum)

Remarks. We can see from the computations above that as the problem size increases (that is,m
and n become large), the procedure of enumerating all the corner points nvolves prohibitive
computations. For example, for m = 10 and n = 20, it is necessary to solve C33 = 184,756 sets of
10 X 10 equations, a staggering task indeed, particularly when we realize that a (10 X 20)-LP is
a small size in most real-iife situations, where hundreds or even thousands of variables and con-
straints are not unusual. The simplex method alleviates this computational burden dramatically
by investigating only a fraction of all possible basic feasible solutions (corner points) of the solu-
tion space. In essence, the simplex method utilizes an intelligent search procedure that locates
the optimum corner point in an efficient manner,

J——

et e n e e et = el aa v

e da e e




W oW W e

oy W R

3.2 Transition from Graphical to Algebraic Solution

PROBLEM SET 3.2A

1. Consider the following LP:

Maximize z = 2x + 3x;
subject to
x+3x,=6
3y +2x; <6
xX,x=0

(a) Express the problem in equation form.

(b) Detexmine all the basic solutions of the problem, and classify them as feasible and

infeasible.

*(¢) Use direct substitution in the objective function to determine the optimum basic
feasible solution.

(d) Verify graphically that the solution obtained in (¢} is the optimum LP solution—

89

hence, conclude that the optimum solution can be determined algebraically by con-

sidering the basic feasible solutions only.

*(e) Show how the infeasible basic solutions are represented on the graphical solution

space.

. Determine the optimum solution for each of the following LPs by enumerating all the

basic solutions.
(a) Maximize z = 2x; — 4x) + 5x3 — 6xy
subject to
X+ 4xy — 2xy + 8x4 =2
—x; + 2xy + 3x3 + dxg =1
Xy, X3, X3, X4 = 0
(b) Minimize z = x; + 2x; — 3x3 — 2x4
subject to
X+ 26 -3+ x,=4
x1+2x2+x3+2x4==4

X, X2, X3, X4 = 0

*#3. Show algebraically that all the basic solutions of the following LP are infeasible.

Maximize z = x| + x;

subject to

X+ 2%, =6
2}']+ X2£16

Xy, X = 0
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3.3

3.3.1

4. Consider the following LP:
Maximize z = 2x, + 3x; + 5x3
subject to
—6x; + 7xy — x5 = 4
x4+ xp +4x; =10
x,x3 20
x5 unrestricted

Conversion to the equation form involves using the substitution x; = x3 — x3. Show
that a basic solution cannot include both x5 and x3 simultaneously.

5. Consider the foltowing LP:

Maximize z = x; + 3x;

subject to
Xy b x, =2
—xy + x; =4
x, unrestricted
x =0
{a) Determine all the basic feasible solutions of the problem.

(b} Use direct substitution in the objective function to determine the best basic solution.

(¢} Solve the problem graphically, and verify that the solution obtained in (c) is the
optimum.

THE SIMPLEX METHOD

Rather than enumerating a/l the basic solutions (corner points) of the LP problem (as
we did in Section 3.2), the simplex method investigates only a “select few” of these so-
lutions. Section 3.3.1 describes the iterative nature of the method, and Section 3.3.2 pro-
vides the computational details of the simplex algorithm.

Iterative Nature of the Simplex Method

Figure 3.3 provides the sohution space of the LP of Example 3.2-1. Normally, the sim-
plex method starts at the origin (point A) where x; = x, = 0. At this starting point, the
value of the objective function, z, 1s zero, and the logical question is whether an increase
in nonbasic x; and/or x, above their current zero values can improve (increase) the
value of z. We answer this question by investigating the objective function:

Maximize = 2x1 + 3X2

The funclion shows that an increase in either x; or x, (or both} above their current
zero values will improve the value of z. The design of the simplex method calls for in-
creasing one variable at a time, with the selected variable being the one with the largest
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FIGURE 3.3

Iterative process of the simplex method

rate of improvement in z. In the present example, the value of z will increase by 2 for
each unit increase in x; and by 3 for each unit increase in x,. This means that the rate of
improvement in the value of z is 2 for x; and 3 for x,. We thus elect to increase x;, the
variable with the largest rate of improvement. Figure 3.3 shows that the value of x,
must be increased until corner point B is reached (recall that stopping short of reach-
ing corner point B is not optimal because a candidate for the optimum must be a cor-
ner point). At point B, the simplex method will then increase the value of x; to reach
the improved corner point C, which is the optimum. The path of the simplex algorithm
is thus defined as A — B — C. Each corner point along the path is associated with an
iteration. It is important to note that the simplex method moves alongside the edges of
the solution space, which means that the method cannot cut across the solution space,
going from A4 to C directly.

We need to make the transition from the graphical solution to the algebraic solu-
tion by showing how the points A, B, and C are represented by their basic and nonba-
sic variables. The following table summarizes these representations:

Corner point Basic variables Nonbasic (zero) variables
A 5y, 52 Xy, Xz
B 5. Xz Xy 82
c Xy, X3 Sy, Ty
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Notice the change pattern in the basic and nonbasic variables as the solution moves
along the path A — B — C. From A to B, nonbasic x, at A becomes basic at B and
basic 5, at A becomes nonbasic at B. In the terminology of the simplex method, we say
that x, is the entering variable (because it enters the basic solution) and s, is the
leaving variable (because it leaves the basic solution). In a similar manner, at point B,
xy enters (the basic solution) and s, leaves, thus leading to point C.

PROBLEM SET 3.3A

L

*3,

In Figure 3.3, suppose that the objective function is changed to
Maximize z = 8x| + 4x;

Identify the path of the simplex method and the basic and nonbasic variables that define
this path.

Consider the graphical solution of the Reddy Mikks model given in Figure 2.2. [dentify
the path of the simplex method and the basic and nonbasic variabies that define this path.

Consider the three-dimensional LI solution space in Figure 3.4, whose feasible extreme

pointsare A4, B, ..., and J.

(a) Which of the following pairs of corner points cannot represent successive simplex it-
erations: (4, B), (B, D), (E, H), and (A, I)? Explain the reason.

{b) Suppose that the simplex iterations start at A and that the optimum occurs at & In-
dicate whether any of the following paths are not legitimate for the simplex algo-
rithm, and state the reason.

(i) A=B—>G—H.
(i) AmE—I—>H.
(iii) AC—2E—>B—>A—-D—G~—H.

For the solution space in Figure 3.4, all the constraints are of the lype = and all the

variables x|, x5, and x5 are nonnegative. Suppose that s, s, 53, and s4 (= 0) are the slacks

associated with constraints represented by the planes CEIJE BEIHG, DFJHG, and {JH,
respectively. Identify the basic and nonbasic vatiables associated with each feasible ex-
treme point of the solution space.

X3 FIGURE 3.4
Solution space of Problem 3, Set 3.2b
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3.3 The Simplex Method 93

5. Consider the solution space in Figure 3.4, where the simplex algorithm starts at point A.
Determine the entering variable in the firsr iteration together with its value and the im-
provement in z for each of the following objective functions:

*(a) Maximize 7 = x; — 2x; + 3x3
(b) Maximize z = 5x; + 2x; + 4x;
=2x1 4 Txy + 2x3
x) + xp +oxy

I

{c) Maximize z
{(d) Maximize 7

i

3.3.2 Computationai Details of the Simplex Algorithm

This section provides the computational details of a simplex iteration, including the
rules for determining the entering and leaving variables as well as for stopping the
computations when the optimum solution has been reached. The vehicle of explana-
tion 1s a numerical example.

Example 3.3-1

We use the Reddy Mikks model {Example 2.1-1) to explain the details of the simplex method.
The problem is expressed in equation form as

Maximize z = 5x; + 4xs + 0s; + Osy + 053 + Qsy

subject to

ﬁxl + 4xy + 5

24 (Raw material M1)

xy + 21 + 5 = 6 {Raw material M2)
—x; + x + 5 = 1 {Market limit)
X3 + 55 = 2 {(Demand limit)

Xy, X, 8y, 52, 83, 84 = 0

The variables 51, $3, 53, and 54 are the slacks associated with the respective constramts.
Next, we write the objective equation as

21— 5%k —4x, =0

In this mannex, the starting simplex tableau can be represented as follows:

Basic z X X3 Solution
z 1 -3 -4 0 0 0 0 G Z-TOW
5 1] 4 24 §1-TOW
52 0 1 2 & Sy TOW
53 0 -1 1 1 53-TOW
54 0 0 1 2 FqLTOW
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The design of the tableau specifies the set of basic and nonbasic variables as well as provides
the solution associated with the starting iteration. As explained tn Section 3.3.1, the simplex iter-
ations start at the origin (x|, x;) = {0, 0) whose associated set of nonbasic and basic variables
are defined as

Nonbasic (zero) variables: (x;, x3)
Basic variables: (s), &, 53, 54)

Substituting the nonbasic variables {x;, x,) = {0, 0) and noting the special 0-1 arrangement
of the coefficients of z and the basic variables (s, 53, 53, 54) in the tableau, the following selution
is immediately available (without any calculations):

z= 0
5y =24
5= 6
=1
5= 2

This information is shown in the tableau by listing the basic variables in the leftmost Basic col-
umn and their values in the rightmost Solution column. In effect, the tableau defines the current
corner point by specifying its basic variables and their values, as well as the corresponding value
of the objective function, z. Remember that the nonbasic variables (those not listed in the Basic
column) always equal zero.

Is the starting solution optimal? The objective function z = 5x; + 4x; shows that the solution
can be improved by increasing x; or x;. Using the argument in Section 3.3.1, x; with the most pos-
itive coefficient 1s selected as the entering variable. Equivalently, becanse the simplex tableau ex-
presses the objective function as z — 5x; — 4x; = 0, the entering variable will correspond to the
variable with the most negative coefficient in the objective equation. This rule is referred to as
the optimality condition.

The mechanics of determining the leaving variable from the simplex tableau calls for com-
puting the nonnegative ratios of the right-hand side of the equations (Solution column) to the
corresponding constraint coefficients under the entering variable, x;, as the following table
shows,

Entering Ratio
X Solution {or Intercept)
6 2 i
3 1 6
53 -1 i
53 0 2 X = % = ¢0 {ignore)

Conclusion: x; enters and s, leaves
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FIGURE 3.5
Graphical interpretation of the simplex method ratios in the Reddy Mikks model

The mininum nonnegative ratio automatically identifies the current basic variable s, as the leav-
ing variable and assigns the entering variable x) the new value of 4.

How do the cormputed ratios determine the leaving variable and the value of the entering
variable? Figure 3.5 shows that the computed ratios are actually the intercepts of the constraints
with the entering variable (x,) axis. We can see that the value of x; musi be increased to 4 at cor-
ner point B, which is the smallest nonnegaiive intercept with the xj-axis. An increase beyond B
is infeasible. At point B, the current basic variable s, associated with constraint I assumes a zero
value and becomes the leaving variable. The rule associated with the ratio compulations is re-
ferred to as the feasibility condifion because it guarantees the feasibility of the new solution.

The new solution point B is determined by “swapping” the entering variable x| and the
leaving variable $; in the simplex tableau to produce the following sets of nonbasic and basic
variables:

Nonbasic (zero) variables at B: (5, x3)

Basic variables at B: (x;, $, 3, 54)

The swapping process is based on the Gauss-Jordan row operations. Tt identifies the entering
variable column as the pivet column and the leaving variable row as the pivot row. The intersec-
tion of the pivot column and the pivot row is called the pivot element. The following tableauis a
restatement of the starting tableau with its pivot row and column highlighted.

P
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Enter

Solution

Leave « Pivot row

The Gauss-Yordan computations needed to produce the new basic solution include two types.

1. Pivot row

a. Replace the leaving variable in the Basic column with the entering variable.
b. New pivot row = Current pivot row + Pivot element

A= emm m mmea— e n e ar s

2. All other rows, including z

New Row = (Current row) — (Its pivot column coefficient} X
(New pivot row)

These computations are applied to the preceding tableau in the following manner:
L. Replace 5y in the Basic column with xy:
New xy-row = Current s;-tow + 6
10641000 24)
(o01%loo004)

—

fl

It

2. New z-row = Current z-row — (—5) X New x;-row
=(1-5-400000)-(-5)x(013}0004)
=(10-%£200020)

3. New s-row = Current sp-row — (1} X New x-row
=(01201006)-(1)x{012%0004)
=(00%-t1002)

4. New s;-row = Current s3-row — (—1) X New xj-row
=(0-1100101)~(-1)x(01%}0004)
={00%;0105)

T e

5. New sgrow = Current s;-row — (0) X New x;-row
={00100012)~(0{01%:0004)
=(00100012)
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The new basic solution is (x|, 55, 53, 54), and the new tableau becomes

53 5y Solution

Observe that the new tableau has the same properties as the starting tableau. When we set
the new nonbasic variables x; and 5; 1o zero, the Sofution column automatically yields the new
basic solution (x| = 4,5 = 2,5, = 5,5, = 2). This “conditioning” of the tableau is the result
of the application of the Gauss-Jordan row operations. The corresponding new objective
value is z = 20, which is consistent with

New z = Old z + New x,-value X its objective coefficient

=0+4%Xx5=2

In the last tableauy, the optimality condition shows that x, is the entering variable. The feasi-
bility condition produces the {ollowing

Entering
Basic Xz Solution Ralio

2
3 4
4
3 2
5
H 5

54 1 2

Thus, 5, leaves the basic solution and new value of x, 1s 1.5. The corresponding increase
inzis2x, =2 x 1.5 = 1, which yields new z = 20 + 1 = 21.

Replacing s, in the Basic column with entering x,, the following Gauss-Jordan row opera-
tions are applied:

New pivot x,-row = Current sy-row + 3
New z-row = Current z-row — (—%) X New xp-row

1.
2
3. New x,-row = Current x,-row — (%) X New xyrow
4.
5.

New s;-row = Current sy-row — (%) X New xp-row

New s;,-row = Current sg-row — (1} X New x,-row
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These computations produce the following tableau:

Basic z X Xy f 52 5 54 Sclution
z i 0 0 2 10 0 21
x) 0 1 0 L 0 3
: 1 3 3
X 0 0 1 - 0 0 2
53 0 0 0 R 0 :
54 0 0 0 it -2 0 1 !

Based on the optimality condition, none of the z-row coefficients associated with the nonbasic
variables, 5; and s,, are negative. Hence, the last tableau is optimal.

The optimum solution can be read from the simplex tableau in the following manner. The
optimal values of the variables in the Basic column are given in the right-hand-side Solution col-
umn and can be interpreted as

Decision variable Optimum value Recommendaticn
x| 3 Produce 3 tons of exterior paint daily
X % Produce 1.5 tons of interior paint daily
2 21 Daily profit is $21,000

You can verify that the values 5, = 5, = 0,53 = % 54 = % are consistent with the given values of
x; and x, by substituting out the values of x; and x; in the constraints

The solution also gives the status of the resources. A resource is designated as scarce if the
activities (variables) of the model use the resource completely. Otherwise, the resource is
abundant. This information is secured from the optimum tableau by checking the value of the
slack variable associated with the constraint representing the resource. If the siack value is
zero, the resource is used completely and, bence, is classified as scarce. Otherwise, a positive
slack indicates that the resource is abundant. The following table classifies the constraints of
the model:

Resource Slack value Status
Raw matecial, Mt 5=0 Scarce
Raw material, M2 $=0 Scarce
Market limit 5 = % Abundant
Demand limit $ = : Abundant

Remarks. The simplex tableau offers a wealth of additional information that includes:

1. Sensitivity analysis, which deals with determining the conditions that will keep the current
solution unchanged.

2. Post-optimal analysis, which deals with finding a new optimal solution when the data of
‘the mode! are changed.
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Section 3.6 deals with sensitivity analysis. The more involved topic of post-optimal analysis
is covered in Chapter 4.

TORA Moment.

The Gauss-Jordan computations are tedious, voluminous, and, above all, boring. Yet,
they are the least important, because in practice these computations are carried out by
the computer. What is important is that you understand how the simplex method
works. TORA’s interactive user-guided option (with instant feedback) can be of help in
this regard because 1t allows you to decide the course of the computations in the sim-
plex method without the burden of carrying out the Gauss-Jordan calculations. To
use TORA with the Reddy Mikks problem, enter the model and then, from the
SOLVE/MODIEY. menu, select $0lve = Algebraic = [terations = AH:Slack. (The
Al-Slack selection indicates that the starting basic solution consists of slack variables
only. The remaining options will be presented in Sections 3.4,4.3, and 7.4.2.) Next, click
Go T Oufpiit Scrégh: You can generate one or all iterations by clicking Néext Iteration
or Alllterations. If you opt to generate the iterations one at a time, you can interac-
tively specify the entering and leaving variables by clicking the headings of their corre-
sponding column and row. If your selections are correct, the column turns green and
the row turns red. Else, an error message will be posted.

Summary of the Simplex Method

So far we have dealt with the maximization case. In minimization problems, the
optimality condition calls for selecting the entering variabie as the nonbasic variable with
the most positive objective coefficient in the objective equation, the exact opposite rule
of the maximization case. This follows because max z is equivalent to min (—z). As for
the feasibility condition for selecting the leaving variable, the rule remains unchanged.

Optimality condition. The entering variable in a maximization (minimization)
problem is the nonbasic variable having the most negative (positive) coefficient in the
z-row. Ties are broken arbitrarily. The optimum is reached at the iteration where all the
z-row coefficients of the nonbasic variables are nonnegative (nonpositive).

Feasibility condition. For both the maximization and the minimization problems,
the leaving variable is the basic variable associated with the smallest nonnegative ratio
(with strictly positive denominator). Ties are broken arbitrarily.

Gauss-Jordan row operations.

1. Pivotrow

a. Replace the leaving variable in the Basic column with the entering variable.
b. New pivot row = Current pivot row + Pivot element

2. All other rows, including z
New row = (Current row) — (pivot column coefficient) X (New pivot row)
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The steps of the simplex method are

Step 1. Determine a starting basic feasible solution.

Step 2. Select an entering variable using the optimality condition. Stop if there is no
entering variable; the last solution is optimal. Else, go to step 3.

Step 3. Select a leaving variable using the feasibility condition.

Step 4. Determine the new basic solution by using the appropriate Gauss-Jordan
computations. Go to step 2.

PROBLEM SET 3.3B

1. This problem is designed to reinforce your understanding of the simplex feasibility condi-
tion. In the first tableau in Example 3.3-1, we used the minimum (roanegative) ratio test
to determine the leaving variable. Such a condition guarantees that none of the new val-
ues of the basic variables will become negative (as stipulated by the definition of the LP).
To demonstrate this point, force 5,, instead of 5, to leave the basic solution. Now, look at
the resulting simplex tableaw, and you will note that 5 assumes a negative value (= —12),
meaning that the new solution is infeasible. This situation will never occur if we employ
the minimum-ratio feasibility condition.

2. Consider the following set of constraints:
X+ 2x, + 2x3 + 4xy = 40
261~ Xzt x3+2x, =8
4.'(1 - 21’2 T Xy x = 10
X1+ X2 x31 X4 = 0
Solve the problem for each of the following objective functions.
(a) Maximize z = 2x, + x;, — 3x; + 5x4.
(b) Maximize z= 8):[ + 6.1'2 + 3x3 - ZX4.
() Maximize z = 3x| — x; + 3x3 + 4x4
(d) Minimize 7 = 5x; — 4x; + 6x3 — 8x;.
*3, Consider the foilowing system of equations:

Xy +2x3 ~ 3x3 + Sx4 + x5 =4
Sx; — 2xy + 6x, + xg =38
2x, + 3xy, — 2x3 F 3x4 + Xy =3
-x + x3 — 2x4 +xg =0

Xy, X3, xg =0

Let x5, xg,..., and xg be a given initial basic feasibie solution. Suppose that x, becomes
basic. Which of the given basic variables must become nonbasic at zero level to guarantee
that all the variables remain nonnegative, and what is the value of x, in the new solution?
Repeat this procedure for x;, x3, and x4
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4. Cousider the following LP:

Maximize z = x,

subject to
S5x; + x3 =4
6x, + x4 =8
3x; +x, =3

Xy X, X3, Xy = 0

(a) Solve the problem by inspection (do not use the Gauss-Jordan row operations), and
justify the answer in terms of the basic solutions of the simplex method.

(b) Repeat (a) assuming that the objective function calls for minimizing z = x;.

. Solve the following problem by inspection, and justify the method of solution in terms of

the basic solutions of the simplex method.
Maximize z = S5x; — 6x9 + 3x3 — 5x5 + 12x5
subject to
x; + 3x + Sx3 ¥ 6xg + 3x5 = 3
Xy, X3, X3, Xg, X5 = 0

(Hint: A basic solution consists of one variable only.)

. The following tableau represents a specific simplex iteration. All variables are nonnega-

tive. The tableau is not optimal for either a maximization or a minimization problem.
Thus, when a nonbasic variable enters the solation it can either increase or decrease z or
[eave it unchanged, depending on the parameters of the entering nonbasic variable.

Basic x Xy X X, X Xg x5 Xg Solution
z 0 -5 G 4 -1 -10 0 0 620
xg Y 0 -2 ~3 -1 5 i 12
X3 0 1 1 3 1 0 3 0 6
X 1 - 0 0 6 -4 0 0 Q

(a) Categorize the variables as basic and nonbasic and provide the current values of all
the variables.

*(b) Assuming that the problem is of the maximization type, identify the nonbasic vari-
ables that have the potential to improve the value of z. I each such variable enters
the basic solution, determine the associated leaving variable, if any, and the associ-
ated change in z. Do not use the Gauss-Jordan row operations.

(¢) Repeat part (b) assuming that the problem is of the minimization type,

(d) Which nonbasic variable(s) will not cause a change in the value of z when selected
to eater the solution?
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FIGURE 3.6
Solution space for Problem 7, Set 3.3b

7. Consider the two-dimensional solution space in Figure 3.6.
(a) Suppose that the objective function is given as

Maximize z = 3x; + 6x,

If the simplex iterations start at point A, identify the path to the optimum point E.

(b) Determine the entering variable, the corresponding ratios of the feasibility condi-
tion, and the change in the value of z, assuming that the starting iteration occurs at
point A and that the objective function is given as

Maximize z = 4x; + x;
(c) Repeat (b), assuming that the objective function is
Maximize z = x; + 4x,
8. Consider the following LP:
Maximize z = 16x; + 15x;
subject to
40x; + 31x, = 124
1
3

1A

—X + X3

1A

X

x;, %20

(a) Solve the problem by the simplex method, where the entering variable is the nonba-
sic variable with the most negative z-row coefficient.

(b) Resolve the problem by the simplex algorithm, always selecting the entering vari-
able as the nonbasic variable with the least negative z-row coefficient.

(¢} Compare the number of iterations in (a) and {b). Does the selection of the entering
variable as the nonbasic variable with the most negative z-row coefficient lead to a
smaller number of iterations? What conclusion can be made regarding the optimaili-
ty condition?

(d) Suppose that the sense of optimization is changed to minimization by multiplying z
by —1. How does this change affect the simplex iterations?
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*9. In Example 3.3-1, show how the second best optimal value of z can be determined from
the optimal tableau.

10. Can you extend the procedure in Problem 9 to determine the third best optimal value of z?
11 The Gutchi Company manufactures purses, shaving bags, and backpacks. The construction
inctudes leather and synthetics, ieather being the scarce raw inaterial. The production

process requires two types of skilled labor: sewing and finishing, The following table gives
the availability of the resources, their usage by the three products, and the profits per unit.

Resource requirements per unit

Resource Purse Bug Backpack BDaily availability
Leather (ft?) 2 1 3 42 it
Sewing (hr} 2 1 2 40 hr
Finishing (hr) I 5 1 45 hr
Selling price ($) 24 22 45

(2) Formulate the problem as a linear program and find the optimum solution (using
TORA, Excel Solver, or AMPL).

(b} From the optimum solution determine the status of each resource.
12. TORA experiment. Consider the following LP:

Maximize z = x; + x; + 3x3 + 2x4
subject to
Xy +2x; = 3x3+ Sxqg=4
Sx; — 2x + 6x, < 8
2xy F 3x — 2x3 + 3x, =3
—x +x3+ 2%, =0
X), X3, X3, %4 = 0

(a) Use TORA’s iterations option to determine the optimum tableau.

{b) Select any nonbasic variable to “enter” the basic solution, and click Next Iteration to
produce the associated iteration. How does the new objective value compare with
the optimum in (a)? The idea is to show that the tableau in (a) is optimum because
none of the nonbasic variables can improve the objective value.

13. TORA experiment. In Problem 12, use TOR A to find the nexi-best optimal solution.

ARTIFICIAL STARTING SOLUTION

As demonstrated in Example 3.3-1, LPs in which all the constraints are (=) with non-
negative right-hand sides offer a convenient all-slack starting basic feasible solution.
Models involving {=) and/or (=) constraints do not.

The procedure for starting “ill-behaved” LPs with (=) and (=) constraints is to
use artificial variables that play the role of slacks at the first iteration, and then dispose
of them legitimately at a later iteration. Two closely related methods are introduced
here: the M-method and the two-phase method.
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M-Method

The M-method starts with the LP in equation form (Section 3.1). If equation { does not
have a slack (or a variable that can play the role of a slack), an artificial variable, R;, is
added to form a starting solution similar to the convenient all-slack basic solution.
However, because the artificial variables are not part of the original LP model, they are
assigned a very high penalty in the objective function, thus forcing them {(eventually) to
equal zero in the optimum solution. This will always be the case if the problem has a
feasible solution. The following rule shows how the penalty is assigned in the cases of
maximization and minimization:

Penalty Rule for Artificial Variables.

Given M, a sufficiently large positive value (mathematically, M — 00), the objec-
tive coefficient of an artificial variable represents an appropriate penalty if:
—M, In maximization problems

Artificial variable objective coefficient = { .
M, in minimization problems

Example 3.4-1

Minimize z = 4x; + x;
subject to
3+ =3
dxy +3x, = 6
X t2x, =4
x,X =0

Using x; as a surplus in the second constraint and x, as a slack in the third constraint, the
equation form of the problem is given as

Minimize z = 4x, + x;
subject to
3y + x =3
Axy + 3x3 — x3 =6
x; + 2x, +x5=14

Xi, X, X3, x4 = 0

The third equation has its slack variable, x4, but the first and second equations do not Thus,
we add the artificial variables R, and R; in the first two equations and penalize them in the ob-
jective function with M R; + M R, (because we are minimizing). The resuiting LP is given as

Minimize z = dx; + x; + MR, + MR,

A e e T

ki e i

A
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subject to
311 + Xz + Rl =3
4X| + 3.‘(2 - X3 + Rz =6
X1 + 2X2 + Xy = 4

X1, X3, X3, Xg, Rh R2 = 0

The associated starting basic solution is now given by (R, Ry, x4) = (3, 6, 4}).

From the standpoint of solving the problem on the computer, M must assume a numeric
value. Yet, in practically all textbooks, including the first seven editions of this book, M is manip-
ulated algebraically in all the simplex tableaus. The result is an added, and unnecessary, layer of
difficulty which can be avoided simply by substituting an appropriate numeric value for M
(which is what we do anyway when we use the computer). In this edition, we will break away
from the long tradition of manipulating M algebraically and use a numerical substitution in-
stead. The intent, of course, is 1o simplify the presentation without losing substance.

What value of M should we use? The answer depends on the data of the original LP. Re-
call that M must be sufficiently large relative to the original objective coefficients so it will act
as a pepalty that forces the artificial variables to zero level in the optimal solution. At the
same time, since computers are the main tool for solving LPs, we do not want M to be too
large {even though mathematically it should tend to infinity) because potential severe round-
off error can result when very large values are manipulated with much smatler values. In the
present example, the objective coefficients of x| and x, are 4 and 1, respectively. It thus ap-
pears reasonable to set M = 100.

Using M = 100, the starting simplex tableau is given as follows {for convenience, the z-col-
umn is eliminated because it does not change in all the iterations):

Basic Xy X3 X3 R.’l Rg X4 Solation
Z -4 -1 0 ¢ ¢
Ry 3 1 0 3
X 1 2 0 ! 4

Before proceeding with the simplex method computations, we need to make the z-row
consisient with the rest of the tableau. Specifically, in the tableau, x; = x; = x3 = 0, which
yelds the starting basic solution R, =3, R; =6 and x, =4. This solution yields
z =100 X 3 + 100 X 6 = 900 (instead of 0, as the right-hand side of the z-row currently
shows}, This inconsisiency stems from the fact that R, and R, bave nonzero coefficients
(—100, —100) in the z-row {compare with the all-slack starting solution in Example 3.3-1,
where the z-row coefficients of the slacks are zero).

We can eliminate this inconsistency by substituting out R and R; in the z-row using the ap-
propriate constraint equations. In particular, notice the highlighted elements (= 1) in the
Ry-row and the Ry-row. Multiplying each of R)-row and R,-row by 100 and adding the sum to
the z-row will substitute out R) and R, in the objective row—that is,

New z-row = Old z-row + (100 X Rj-row + 100 X Rjy-row)
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The modified tableau thus becomes (verify!)

R, X4 Solution

Notice that z = 900, which is consistent now with the values of the starting basic feasible solu-
tion: Ry = 3, Ry = 6,and x4 = 4.

The last tableau is ready for us to apply the simplex method using the simplex optimality
and the feasibility conditions, exactly as we did in Section 3.3.2. Because we are minimizing the
objective function, the variable x, having the most positive coefficient in the z-row {= 696} en-
ters the solution. The minimum ratio of the feasibility condition specifies R, as the leaving vari-
able (verify!).

Once the entering and the leaving variables have been determined, the new tableau can be
computed by using the familiar Gauss-Jordan operations.

Ry Ry Xy Solution

The last tableau shows that x; and R, are the entering and leaving variables, respectively.
Continuing with the simplex computations, two more iterations are needed to reach the opti-
mum: x, = % Xy = %, = % (verify with TORAY).

Note that the artificial variables R; and R, leave the basic solution in the first and second it-
erations, a result that is consistent with the concept of penalizing them in the objective function.

Remarks. The use of the penalty M will not force an artificial variable to zero level in the final
simplex iteration if the LP does not have a feasible solution (i.e., the constraints are not
consistent). In this case, the final simplex iteration will include at least one artificial vanable at a
positive level. Section 3.5.4 explains this situation.

PROBLEM SET 3.4A

L. Use hand compultations to complete the simplex iteration of Example 3.4-1 and obtain
the optimum solution,

2. TORA experiment. Generate the simplex iterations of Example 3.4-1 using TORA’s
Jterations = M-méthod module (file toraEx3.4-1.txt). Compare the effect of using
M =1, M = 10,and M = 1000 on the solution. What conclusion can be drawn from this

experiment?
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3. In Example 3.4-1, identify the starting tableau for each of the following (independent)

*6.

cases, and develop the associated z-row after substituting out all the artificial variables:
*(a) The third constraint is x; + 2x, 2 4.
*(b) The second constraint is 4x; + 3x, = &.
{¢) The second constraint is 4x; + 3x; = 6,
(d) The objective function is to maximize 7 = 4x; + x;.
Consider the following set of constraints:
~2x;+ 3, =3 (1)
4x; + 5x, 2 10 (2)
X +2x,=5  (3)
6x, + Tx, €3 (4)
4x; + 8x, =5 (5)
x,x=0

For each of the following problems, develop the z-row after substituting out the artificial
variabies:
(a) Maximize z = 5x; + 6x; subject to (1), (3),and (4).
(b) Maximize z = 2x; — 7x; subject to (1), (2), (4), and (5).
{c) Minimize z = 3x; + 6x, subject to (3}, (4), and (5).
(d) Minimize z = 4x; + 6x; subject to (1), (2), and (5).
(e) Minimize z = 3x; + 2x; subject to (1) and (5).
Consider the following set of constraints:

i+ x;+x;=7

2x; — 5x; + x5 = 10

Xy, Xq X3 = 0

Solve the problem for each of the following objective functions:
(a) Maximize z = 2x; + 3x; ~ 5x3.
{b) Minimize z = 2x; + 3x; — Sxs.
(¢} Maxumnize z = x; + 2x; + x3.
(d) Minimize z = 4x; ~ 8x; + 3x;.
Consider the problem
Maximizc Z = 2x1 + ‘-1):2 + 4X3 - 3X4

subject to

xg+ x3+ x; =4

X, + 4xy +x,=38

X1, xZ) x3| X4, = 0

The problem shows that x; and x; can play the role of slacks for the two equations. They
differ from slacks in that they have nonzero coefficients in the objective function. We can
use x; and x, as starting variable, but, as in the case of artificial vaniables, they must be
substituted out in the objective function before the simplex iterations are carried out.

Solve the problem with x3 and x4 as the starting basic variables and without using any
artificial variables.
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7. Solve the following probiem using x3 and x4 as starting basic feasible variables. Asin
Problem 6, do not use any artificial variables.

Minimize z = 3x; + 2x; + 3xy
subject to
X, + dx; + x4 =7
2x, + x4y +x, = 10

Xy, X3, X3, Xy =0

8. Consider the problem
Maximize z = x; + 5x, + 3x,
subject to
x,+2x+x3=3
2x, — X3 =4
Xy, X2, X320

The variable x; plays the role of a slack. Thus, no artificial variabie is needed in the first
constraint. However, in the second coustraint, an artificial variable is needed. Use this

starting solution (L.e., x5 in the first constraint and R, in the second constraint) to solve
this problem.

9. Show how the M-method will indicate that the following problem has no feasible solution.
Maximize z = 2x; + 5x;

subject to
3x1 + 2.‘-[2 =6
2):[ + xz = 2

X5, X2 =0

Two-Phase Method

In the M-method, the use of the penalty M, which by definition must be large relative
to the actual objective coefficients of the model, can result in roundoff error that may
impair the accuracy of the simplex calculations. The two-phase method alleviates this
difficulty by eliminating the constant M altogether. As the name suggests, the method
solves the LP in two phases: Phase [ attempts to find a starting basic feasible solution,
and, if one is found, Phase II is invoked to solve the original problem.

Summary of the Two-Phase Method

Phase I. Put the problem in equation form, and add the necessary artificial vari-
ables to the constraints (exactly as in the M-method) to secure a starting
basic solution. Next, find a basic solution of the resulting equations that,
regardless of whether the LP is maximization or minimization, always
minimizes the sum of the artificial variables. If the minimum value of the




s ey e —

3.4 Artificial Starting Solution 109

sum is positive, the LP problem has no feasible solution, which ends the
process (recall that a positive artificial variable signifies that an original
constraint is not satisfied). Otherwise, proceed to Phase II.

Phase II. Use the feasible solution from Phase I as a starting basic feasible solu-
tion for the original problem.

Example 3.4-2

We use the same problem in Example 3.4-1..

Phase |
Minimize r = R; + Ry
subject to
3t x; + R, =3
4x; + 3xy — X3 + R; =6
x + 2x; +x;=4

X1, X2, X3, X4, R], Rz = 0

The associated tableau 1s given as

Basic x| X3 X3 X4 Solution
r 0 0 0 0 0
R 3 1 0 3
R, 4 3 -1 0 6
A 1 2 1 4

As in the M-method, R, and R; are substituted out in the r-row by using the following com-
putations:

New r-row = Old r-row + (1 X Rj-row + 1 X Ry-row)

The new r-row is used to solve Phase 1 of the problem, which yields the following optimum
tableau (verify with TORA’s Iterations = Two-phase Method):

Basic X, X3 x5 Solution
r 0 0 0 0
X 1 0 ! 2
X3 0 1 - 2 g
X3 0 0 1 1
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Because minimum r = 0, Phase I produces the basic feasible solution x, = % x; = g,
and x, = 1. At this point, the artificial variables have completed their mission, and we can elim-
inate their columns altogether from the tableau and move on to Phase I1.

Phase I1
After deleting the artificial columns, we write the original problem as

Minimjzez = 4x'| + Xz

subiect to
1 _3
X + EX3 = 3
3 =&
Xy — 3X3 =3
x3+x3 =1

Xy, X, X3, x4 = 0

Essentially, Phase I is a procedure that transforms the original constraint equations in a manner
that provides a starting basic feastble solution for the problem, if one exists. The tableau associ-
ated with Phase II problem is thus given as

x3 X4 Solution
0 0 1]
$ 0 3

4 0
1 1 1

Again, because the basic variables x, and x; have nonzero coefficients in the z-row, they
must be substituted out, using the following computations.

New z-row = Old z-row + (4 X x;-row + 1 X xp-row)

The initial tableau of Phase I is thus given as

Basic x, X X3 Xy Solution
z 0 0 L 1
x 1 o P00 :
X, ] 0 1 1 1

Because we are minimizing, X3 must enter the solution. Application of the simplex method
will produce the optimum ia one iteration (verify with TORA).

Remarks. Practically ali commercial packages use the two-phase method to solve LP. The M-
method with its potential adverse roundoff error is probably never used in practice. Its inclusion in
this text is purely for historical reasons, because its development predates the development of the
two-phase method.
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The removal of the artificial variables and their columns at the end of Phase I can take place
only when they are all nonbasic (as Example 3.4-2 illustrates). If one or more artificial variables
are basic (at zero level} at the end of Phase I, then the following additional steps must be under-
taken to remove them prior to the start of Phase II.

Step 1. Select a zero artificial variable to leave the basic solution and designate its row as the

Step 2.

pivot row. The entering variable can be any nonbasic (nonartificial) variable with a
nonzero (positive or negative} coefficient in the pivot row. Perform the associated sim-
plex iteration.

Remove the column of the (just-leaving) artificial variable from the tableau. If all the
zero artificial variables have been removed, go to Phase II. Otherwise, go back to Step 1.

The logic behind Step 1 is that the feasibility of the remaining basic variables will not be af-
fected when a zero artificial variable is made nonbasic regardless of whether the pivot element
is positive or negative. Problems 5 and 6, Set 3.4b illustrate this situation. Problem 7 provides
an additional detail about Phase I calculations.

PROBLEM SET 3.4B

*1. In Phase I, if the LP is of the maximization type, explain why we do not maximize the
sum of the artificial variables in Phase 1.

2. For each case in Problem 4, Set 3.4a, write the corresponding Phase I objective function.

bl

Solve Problem 5, Set 3.4a, by the two-phase method.

4. Write Phase I for the following problem, and then solve (with TORA for convenience)}
to show that the problem has no feasible solution. '

Maxirnize z = 2x; + 5xy

subject to

3X[+21226
2x  + xp, =2

Xia X9 = Q

5. Consider the following problem:

Maximize z = 2x; + 2x; + 4x3

subject to

2I1+ Xy + 1352
3, + 4xy + 2, = 8

X1, X9, X3 = 0

(a) Show that Phase I will terminate with an artificial basic variable at zero level (you

may use TORA for convenience).

() Remove the zero artificial variable prior to the start of Phase II, then carry out

Phase I iterations.
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Consider the following problem:
Maximize z = 3x; + 2x; + 3xa

subject to

Wy + xp+ x3=

xi+3x+ x;=

3x +4x + 263 =8

X,x,% =0

(a) Show that Phase [ terminates with two zero artificial variables in the basic sotution

(use TORA for convenience).

(b) Show that when the procedure of Problem 5(b) is applied at the end of Phase I, only
one of the two zero artificial variables can be made nonbasic.

(¢) Show that the original constraint associated with the zero artificial variable that can-
not be made nenbasic in (b) must be redundant—hence, its row and its column can
be dropped altogether at the start of Phase ILL

Consider the fellowing L.P:
Maximize z = 3x, + 2x3 + 3x3
subject to
ey + X+ x3=2
Ixy +4xy + 2232 8

Xy, X3, X3 =0

The optimal simplex tableau at the end of Phase I is given as

Basic X Xz X3 X4 X5 R Sotution
z -5 0 -2 -1 -4 0 ¢
x; 2 1 1 0 10 2
R =5 0 -2 -1 -4 1 0

Explain why the nonbasic variables x), x3, x4, and x5 can never assume positive val-
ues at the end of Phase II. Hence, conclude that their columns can dropped before we
start Phase I1. In essence, the removal of these vanables reduces the constraint equations
of the problem to x; = 2. This means that it will not be necessary to carry out Phase II at
all, because the solution space is reduced to one point only.

Consider the LP model
Minimize z = 2x; — 4x; + 3x;
subject 10
Sy —6x +2x3 =5
—x) + 333+ 5x3 = 8
2x; + S5x3 — 4xy; = 4
Xy, X3, %3 =0

Show how the inequalities can be modified to a set of equations that requires the use of a
single artificial variable only (instead of two).
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SPECIAL CASES IN THE SIMPLEX METHOD

This section considers four special cases that arise in the use of the simplex method.

1. Degeneracy

2. Alternative optima

3. Unbounded solutions

4. Nonexisting (or infeasible) solutions

Our interest in studying these special cases is twofold: (1) to present a theoretical
explanation of these situations and (2) to provide a practical interpretation of what
these special results could mean in a real-life problem.

Degeneracy

In the application of the feasibility condition of the simplex method, a tie for the mini-
mum ratio may occur and can be broken arbitranly. When this happens, at least one basic
variable will be zero in the next iteration and the new solution is said to be degenerate.

There is nothing alarming about a degenerate solution, with the exception of a
small theoretical inconvenience, called cycling or circling, which we shall discuss short-
ly. From the practical standpoint, the condition reveals that the model has at least one
redundant constraint. To provide more insight into the practical and theoretical im-
pacts of degeneracy, a numeric example is used.

Example 3.5-1 (Degenerate Optimal Solution)

Maximize z = 3x, + 9x;
subject to
x +4x, =8
x, t2x =4
X, 1,20

Given the slack variables x; and x4, the following tableaus provide the simplex iterations of
the problem:

[teration Basic x| X3 X3 x4 Solution,

0 z -3 l 0 0 0

X, enters X3 1 4 1 0 8

x, leaves X4 1 2 ] 1 4
1 z -2 0 2 0
X, enters X, : 1 i 0
X4 leaves X4 '5 0 —'5 1
2 z 0 0 3 2
(optimum) X3 0 1 i -
x| 1 0 ~1 2
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Optimal 5
degenerate [gf%
solution
X

FIGURE 3.7
LP degeneracy in Example 3.3-1

In iteration 0, x5 and x, tie for the leaving variable, leading to degeneracy in iteration 1
because the basic variable x4 assumes a zero value. The optimuim is reached in ope additional
iteration,

What is the practical implication of degeneracy? Look at the graphical solution in Figure 3.7.
Three lines pass through the optimum point (x, = 0, x, = 2). Because this is a two-dimensional
problem, the point is overdetermined and one of the constraints is redundant.? In practice, the
mere knowledge that some resources are superflucus can be valuable during the implementa-
tion of the solution. The information may also lead to discovering irregularities in the construc-
tion of the model. Unfortunately, there are no efficient computational techniques for identifying
the redundant constraints directly from the tableau.

From the theoretical standpoint, degeneracy has two implications. The first is the phe-
nomenon of cycling or circling. Looking at simplex iterations 1 and 2, you will notice that the
objective value does not improve (z = 18). It is thus possible for the simplex method to enter
a repetifive sequence of iterations, never improving the objective value and never satisfying
the optimality condition (see Problem 4, Set 3.5a). Although there are methods for eliminat-
ing cycling, these methods lead to drastic slowdown in computations. For this reason, most LP
codes do not include provisions for cycling, relying on the fact that it is a rare occurrence in
practice.

The second theoretical point arises in the examination of iteratioas 1 and 2. Both iterations,
though differing in the basic-nonbasic categorization of the variables, yield identical values for
all the variables and objective value—namely,

Xy = 0,12 = 2,13 = 0,x4 = O,Z =18
Is it possible then to stop the computations at iteration 1 (when degeneracy first appears},

even though it is not optimum? The answer is no, because the solution may be remporarily de-
generate as Problem 2, Set 3.5a demonstrates.

‘Redundancy generally implies that constraints can be removed without affecting the feasible solution space.
A sometimes quoted counterexample is x + y = 1, x = 1, y = 0. Here, the removal of any one constraint
will change the feasible space from a single point to a region. Suffice it to say, however, that this condition is
true only if the solution space consists of a single feasible point, a highly unlikely occurrence in real-life LPs.
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PROBLEM 5ET 3.5A

*1. Consider the graphical solution space in Figure 3.8. Suppose that the simplex iterations
start at A and that the optimum solution occurs at D. Further, assume that the objective
function is defined such that at A, x| enters the sofution first.

(a) Identify (on the graph) the corner points that define the simplex method path to the
optimum point.
(b) Determine the maximum possible number of simplex iterations needed to reach the
optimum solution, assuming no cycling.
2. Consider the following LP:

Maximize z = 3x; + 2x,

subject to

e 4x) —x; =8
1 i 4):[ + 3XZ = 12
il : 4x1 + x; = 8
7 X, =0
il (a) Show that the associated simplex iterations are temporarily degenerate (you may
e use TORA. for convenience).
: (b} Verify the result by solving the problem graphically (TORA’s Graphic module can
. be used here).

3. TORA experiment. Consider the LLP in Problem 2.
5 _ (a) Use TORA to generate the simplex iterations. How many iterations are needed to
e reach the optimum?
2r (b) Interchange constraints (1) and (3) and re-solve the problem with TORA. How
1g many iterations are needed 1o solve the problem?
‘; (c) Explain why the numbers of iterations in (a) and (b) are different.
in
FIGURE 3.8
18, - Solution space of Problem 1, Set 3.5a
or
X2

3),
le-
1ce. :
iiaf ;
nis *q
Ps.

.
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4. TORA Experiment Consider the following LP (authored by E.M. Beale to dernonstrate
cycling): '

Maximize z = %xl - 20x, + %xg, — 6x,4
subject to
lei— 8xp— x4+ 9 =0
1) = 122 — 3x3 + 3x4 = 0
X =1

Xy, Xy, X3, x4 2 0

From TORA’s SOLVE/MODIFY menu, select Solve = Blgebriic = [teraticng =
All-slack. Next, “thumb” through the successive simplex iterations using the command
Next iteTition (do not use Adl itérations, because the simplex method will then cycle in-
definitely). You will notice that the starting all-slack basic feasible solution at iteration 0
will reappear identically in iteration 6. This example iltustrates the occurrence of cycling
in the simplex iterations and the possibility that the algorithm may never converge to the
optimum solution.

It is interesting that cycling will not occur in this example if all the coefficients in this
LP are converted to integer values by using proper multiples (try it!).

Alternative Optima

When the objective function is parallel to a nonredundant binding constraint (i.e., a
constraint that js satisfied as an equation at the optimal solution), the objective
function can assume the same optimal value at more than one solution point, thus
giving rise to alternative optima. The next example shows that there is an infinite
number of such solutions. It also demonstrates the practical significance of encoun-
tering such solutions.

Example 3.5-2 (Infinite Number of Solutions)

Maximize z = 2x; + 4x,
subject to
nt+t2xnp =S5
n+ =4

X1, X3 =0

Figure 3.9 demonstrates how alternative optima can arise in the LP model when the objec-
tive function is paralle! to a binding constraint. Any point on the line segmenr BC represents an
alternative optimum with the same objective value z = 10.

The iterations of the model are given by the following tableaus.




3.5 Special Cases in the Simplex Method 117

FIGURE 3.9
LP alternative optima in Example 3.5-2

Feration Basic X, X3 Xy X4 Solution
0 2 -2 -4 0 0 0
x, eaters X3 1 2 1 0 5
x3 leaves X4 1 0 1
1 {optimum) 2 0 2 0 10
; x, enters X, 1 ! 0 3
x, leaves X 0 - 1 2
2 4 0 0 2 10
(alternative optimum) X3 0 1 1 1
X 1 0 -1 2 3

Iteration 1 gives the optimum solution x; = 0, x3 = % and z = 10, which coincides with
point B in Figure 3.9. How do we know from this tableau that alternative optima exist? Look at
the z-equation coefficients of the nonbasic variables in iteration 1. The coefficient of nonbasic x;
is zero, indicating that x; can enter the basic solution without changing the value of z, but caus-
ing a change in the values of the variables. Iteration 2 does just that—letting x; enter the basic
solution and forcing x4 to leave. The new solution point occurs at C(x; = 3, x; = 1,z = 10}
(TORA’s Tterations option allows determining one alternative optimum at a time.)

P The simplex method determines only the two corner poinis 8 and C. Mathematically, we
] can determine all the points (x), x;) on the line segment BC as a nonnegative weighted average
of points B and C. Thus, given

VT

[T 1Y

B!Xl =O,x2=

Cix;=3,x=1

e
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then all the poinis on the line segment BC are given by

$1= a(0) + (1 - a)(3) = 3 - 3&},0 -

fmalf) + (1-a)(1) =1+ la =1

N

When a = 0, (), &) = (3,1), which is point C. When a = 1, (¥, %) = {0,3), which is
point B. For values of « between O and 1, (x, X3) lies between B and C.

Remarks. In praciice, alternative optima are useful because we can choose from many solu-
tions without experiencing deterioration in the objective value. For instance, in the present ex-
ample, the solution at 8 shows that activity 2 only is at a positive level, whereas at C both
activities are positive, If the example represents a product-mix situation, there may be advan-
tages in producing two products rather than one to meet market competition. In this case, the so-
lution at C may be more appealing.

PROBLEM SET 3.5B

*1. For the following LP, identify three alternative optimal basic solutions, and then write a
general expression for all the nonbasic alternative optima comprising these three basic

solutions.
Maximize 7 = x; + 2x; + 3x3
subject to
Xy + 2x, + 3x, = 10
x+ x =5
X =1

X), X3, x, 2 0

Note: Although the problem has more than three alternative basic solution optima,
you are only required to identify three of them. You may use TORA for
convenience.

2, Solve the following LP:
Maximize z = 2Zx; — x3 + 3x3
subject to
Xy~ X3 + 5x3 = 10
2xy; — x5 + 3x3 = 40
X Xp, X3 2 0

From the optimal tableau, show that all the alternative optima are not corner points
(i.e., nonbasic). Give a two-dimensional graphical demonstration of the type of solu-
tion space and objective function that will produce this result. (You may use TORA
for convenience.)

S —,
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3. For the following LP, show that the optimal solution is degenerate and that none of the
alternative solutions are corner points (you may use TORA for convenience).

Maximize z = 3x; + x3
subject to
xy + 2x; =5
N+ xp—x3=2
Txy +3xy — 5x3 =20

X1, X2, X3 = (0

Unbounded Solution

In some LP models, the values of the variables may be increased indefinitely without
violating any of the constraints—meaning that the solution space is unbounded in at
least one variable. As a result, the objective value may increase (maximization case) or
decrease (minirmization case) indefinitely. In this case, both the solution space and the
optimum objective value are unbounded.

Unboundedness points to the possibility that the model is poorly constructed.
The most likely irregularity in such models is that one or more nonredundant con-
straints have not been accounted for, and the parameters (constants) of some con-
straints may not have been estimated correctly.

The following examples show how unboundedness, in both the solution space
and the objective value, can be recognized in the simplex tableau.

Example 3.5-3 (Unbounded Objective Value)

Maximize z = 2x; + 1,

subject to

Starting Iteration

Basic x X, Sotution
z =2 0 0
X4 2 1 40
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In the starting tableau, both x, and x; have negative z-equation coefficients. Hence either
one can improve the solution. Because x; has the most negative coefficient, it is normally select-
ed as the entering variable. However, alf the constraint coefficients under x; (i.e., the denomina-
tors of the ratios of the feasibility condition) are negative or zere. This means that there is no
leaving variable and that x, can be increased indefinitely without violating any of the constraints
(compare with the graphical interpretation of the minimum ratio in Figure 3.5). Because each
unit increase in x, will increase z by 1, an infinite increase in x, leads to an infinite increase in z.
Thus, the problem has ne bounded solution. This result can be seen in Figure 3.10. The solution
space is unbounded in the direction of x,, and the value of z can be increased indefinitely.

Remarks. What would have happened if we had applied the strict optimality condition that
calls for x; to enter the solution? The answer is that a succeeding tableau would eventually have
led to an entering variable with the same characteristics as x,. See Problem 1, Set3.5¢c.

PROBLEM SET 3.5C

L. TORA Experiment. Solve Example 3.5-3 using TOR A’s Tt€fatiéas option and show that
even though the solution starts with x; as the entering variable (per the optimality condi-
tion), the simplex algorithm will point eventually to an unbounded solution.

*2. Consider the LP: ‘
Maximize z = 20x; + 10x; + xy
subject to
3x; — 3xy + 5x3 = 50
x; + x3; =10
Xy — x; +4x3 =20

X1y X2, X3 =0

FIGURE 3.10
LP unbounded solotion in Example 3.5-3

—
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(a) By inspecting the constraints, determine the direction (x;, x3, or x3) in which the so-
lution space is unbounded.

(b} Without further computations, what can you conclude regarding the optimum objec-
tive value?

3. Insome ill-constructed LP models, the sofution space may be unbounded even though
the problem may have a bounded objective value. Such an occurrence can point only to
irregularities in the construction of the model. In large problems, it may be difficult to de-
tect unboundedness by inspection. Devise a procedure for determining whether or nota
solution space is unbounded.

Infeasible Solution

LP models with inconsistent constraints have no feasible solution. This situation can
never occur if @il the constraints are of the type = with nonnegative right-hand sides
because the slacks provide a feasible solution. For other types of constraints, we use ar-
tificial variables. Although the artificial variables are penalized in the objective func-
tion to force them to zero at the optimum, this can occur only if the model has a
feasible space. Otherwise, at least one artificial variable will be positive in the optimum
iteration. From the practical standpoint, an infeasible space points to the possibility
that the model 1s not formulated correctly.

Example 3.5-4 (Infeasible Solution Space)
Consider the following LP:

Maximize 7 = 3x; + 2x,
subject to
2x,+ = 2
3x, +4x, =12

X, X =0

Using the penalty M = 100 for the artificial variable R, the foliowing tableaux provide the
simplex iterations of the model.

Iteration Basic X, Xy X4 X5 R Selution
1] z =303 -402 100 0 0 —1200
X3 enters X3 2 1 0 I 0 2
xy leaves R 3 4 -1 0 1 12
1 z 50 0 100 402 0
(pseudo-optimam) X, 2 i 0 1 1]
IR -5 0 -1 -4 1

Optimum iteration 1 shows that the artificial variable R is positive (= 4), which indicates
that the problem is infeasible. Figure 3.11 demonstrates the infeasible solution space. By allowing
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Psuedo-optimal
solution

- X

FIGURE 3.1
Infeasible solution of Example 3.5-4

the artificial variable to be positive, the simplex method, in essence, has reversed the direction of
the inequality from 3x, + 4x, = 12 10 3x, + 4%, = 12 (can you explain how?). The result is
what we may call a pseudo-optinal solution.

PROBLEM SET 3.5D

*1. Toolco produces three types of tools, 71, 72, and 73. The tools use two raw materials, M1
and M2, according to the data in the following table:

Number of units of raw materials per tool

Raw material TI T2 73
Ml 3 5 [+
M2 5 3 4

The available daily quantities of raw materials M1 and M2 are 1000 units and 1200 units,
respectively. The marketing department informed the production manager that according
to their research, the daily demand for all three tools must be at least 500 units. Wiil the
manufacturing department be able to satisfy the demand? If not, what is the most Toolco
can provide of the three tools?

2, TORA Experiment. Consider the LP model
Maximize z = 3x; + 2x; + 3x3
subject to
200F XpF x3=2
311‘]"412“]’21328

Xy, X9, X3 =0
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Use TORA's Iterations = M+-Meéthod to show that the optima!l solution includes an arti-
ficial basic variable, but at zero level. Does the problem have a feasible optimal solution?

SENSITIVITY ANALYSIS

In LP, the parameters (input data) of the model can change within certain litits with-
out causing the optimum solution to change. This is referred to as sensitivity analysis,
and will be the subject matter of this section. Later, in Chapter 4, we will study post-
optimal analysis which deals with determining the new optimum solution resulting
from making targeted changes in the input data.

In LP models, the parameters are usually not exact. With sensitivity analysis, we
can ascertain the impact of this uncertainty on the guality of the optimum solution. For
example, for an estimated unit profit of a product, if sensitivity analysis reveals that the
optimum remains the same for a 10% change in the unit profit, we can conclude that
the solution is more robust than in the case where the indifference range is only £1%.

We will start with the more concrete graphical solution to explain the basics of
sensitivity analysis. These basics will then be extended to the general LP problem using
the simplex tableau results.

Graphical Sensitivity Analysis

This section demonstrates the general idea of sensitivity analysis. Two cases will be con-
sidered:

1. Seunsitivity of the optimum solution to changes in the availability of the resources
(right-hand side of the constraints).

2. Sensitivity of the optimum solution to changes in unit profit or unit cost {coeffi-
cients of the objective function).

We will consider the two cases separately, using examples of two-variable graph-
ical LPs.

Example 3.6-1 {Changes in the Right-Hand Side)

JOBCO produces two products on two machines. A unit of product 1 requires 2 hours on machine
1 and 1 hour on machine 2, For product 2, a unit requires 1 hour on machine 1 and 3 hours on ma-
chine 2. The revenues per unit of products 1 and 2 are $30 and $20, respectively. The total daily
processing time available for each machine is 8 hours.

Letting x; and x, represent the daily number of units of products 1 and 2, respectively, the
LP model is given as

Maximize z = 30x; + 20x,
subject 10
2+ x3 =8 (Machine 1)
x, +3x;, = 8§ {Machine 2)

Xy, L3 = 0
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Figure 3.12 illustrates the change in the optimum solution when changes are made in the capaci-
ty of machine 1. If the daily capacity is increased frorm 8 hours to 9 hours, the new optimum will
oceur at point G. The rate of change in optimum z resulting from changing machine 1 capacity
from 8§ hours to 9 hours can be computed as follows:

Rate of revenue change

lting from i i - 142 - 1
resulting from increasing | _ G 2c _ 28 _ $14.00/hr
machine 1 capacity by 1 hr {Capacity change) 9-8
(point C to point G)

The computed rate provides a direct link between the model input (resources) and its output
(total revenue) that represents the unit worth of a resource (in $/hr)—that is, the change in the
optimal objective value per unit change in the availability of the resource {machine capacity).
This means that a unit increase (decrease) in machine 1 capacity will increase (decrease) rev-
enue by $14.00. Although unir worth of a resource is an apt description of the rate of change of
the objective function, the technical name dual or shadow price is now siandard in the LP litera-
ture and all software packages and, hence, will be used throughout the book.

FIGURE 3.12
Graphical sensitivity of optimal solution to changes in the availability of resources {right-hand side of the
constraints}
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Looking at Figure 3.12, we can see that the dual price of $14.00/hr remains valid for changes
(increases or decreases) in machine 1 capacity that move its constraint parallel t¢ itself to any
point on the line segment BF. This means that the range of applicability of the given dual price
can be cotnputed as follows:

Minimum machine 1 capacity [at 8 = (0,2.67)] =2 X 0+ 1 X 2.67 = 267 hr
Maximum machine 1 capacity {at F = {8,0)] =2 X8+ 1 X 0 =16hr

We can thus conclude that the dual price of $14.00/hr will remain valid for the range
2.67 hrs = Machine 1 capacity = 16 hrs

Changes outside this range will produce a different dual price {worth per unit).

Using similar computations, you can verify that the dual price for machine 2 capacity is
$2.00/hr and it remains valid for changes (increases or decreases) that move its constraint paral-
lel to itself to any point on the line segment DE, which yields the following limits:

Minimum machine 2 capacity [at D = (4,0)) =1 X4 +3 X 0 =4hr
Maximum machine 2 capacity [at E = (8,0)] =1 X0+ 3 X 8 = 24 hr

The conclusion is that the dual price of $2.00/hr for machine 2 will remain applicable for the range
4 hr < Machine 2 capacity = 24 hr

The computed limits for machine 1 and 2 are referred to as the feasibility ranges. All software
packages provide information about the dual prices and their feasibility ranges. Section 3.6.4
shows how AMPL, Solver, and TORA generate this information.

The dual prices aliow making economic decisions about the LP problem, as the following
questions demonstrate:

Question 1. If JOBCO can increase the capacity of both machines, which machine should re-
ceive higher priority?

The duat prices for machines 1 and 2 are $14.00/hr and $2.00/lir. This means that each addi-
tional hour of machine 1 will increase revenue by $14.00, as opposed to only $2.00 for machine 2.
Thus, priorily should be given to machine 1.

Question 2, A suggestion is made to increase the capacities of machines 1 and 2 at the addi-
tional cost of $10/hx. Is this advisable?

For machine 1, the additional net revenue per hour is 14.00 ~ 10.00 = $4.00 and for ma-
chine 2, the net is $2.00 —~ $10.00 = —$8.00. Hence, only the capacity of machine 1 should be
increased.

Question 3. If the capacity of machine 1 is incteased from the present 8 hours to 13 hours, how
will this increase impact the optimum revenue?

The dual price for machine 1 is $14.00 and is applicabie in the range (2.67, 16) hr. The pro-
posed increase to 13 hours falls within the feasibility range. Hence, the increase in revenue is
$14.00(13 - 8) = $70.00, which means that the total revenue will be increased to
{current revenue + change in revenue) = 128 + 70 = $198.00.

Question 4. Suppose that the capacity of machine 1 is increased to 20 hours, how will this in-
crease impact the optimum revenue?



126

Chapter 3 The Simplex Method and Sensitivity Analysis

The proposed change is outside the range (2.67, 16) hr for which the dual price of $14.00 re-
mains applicable. Thus, we can onfy make an inmediate conclusion regarding an increase up to
16 hours. Beyond that, further calculations are needed to find the answer (see Chapier 4). Re-
member that falling outside the feasibility range does not mean that the problem has no solution.
It only means that we do not have sufficient information to make an inumediate decision.

Question 5. We know that the change in the optimum objective value equals (dual
price X change in resource) 5o loag as the change in the resource is within the feasibility range.
What about the associated optimurn values of the variables?

The optimum values of the variables will definitely change. However, the level of informa-
tion we have from the graphical sclution is not sufficient to determine the new values Section
3.6.2, which treats the sensitivity problem algebraically, provides this detail.

PROBLEM SET 3.6A

1. A company produces two products, A and B. The unit revenues are $2 and $3, respective-
ly. Two raw materials, M1 and M2, used in the manufacture of the two products have re-
spective daily availabilities of 8 and 18 units. One unit of A uses 2 units of M1 and 2 units
of M2,and 1 unit of B uses 3 units of M] and 6 units of M2.

(a) Determine the dual prices of M1 and M2 and their feasibility ranges.

(b) Suppose that 4 additional units of M1 can be acquired at the cost of 30 cents per
unit, Would you recommend the additional purchase?

(c) What is the most the company should pay per unit of M27

(d) If M2 availability i1s increased by 5 units, determing the assaciated optimum revenue.

*2. Wild West produces two types of cowboy hats. A Type 1 hat requires twice as much labor

time as a Type 2. If all the available labor time is dedicated to Type 2 alone, the company

can produce a total of 400 Type 2 hats a day. The respective market limits for the two types

are 150 and 200 hats per day. The revenue is 38 per Type 1 hat and $5 per Type 2 hat.

(a) Use the graphical solution to determine the number of hats of each type that maxi-
mizes revenue.

(b) Deiermine the dual price of the production capacity (in terms of the Type 2 hat) and
the range for which it is applicable.

(¢) If the daily demand limit on the Type 1 hat is decreased to 120, use the dual price to
determine the corresponding effect on the optimal revenue.

(d) What is the dual price of the market share of the Type 2 hat? By how much can the
market share be increased while yielding the computed worth per unit?

Example 3.6-2 (Changes in the Objective Coefficients)

Figure 3.13 shows the graphical solution space of the JOBCO problem presented in Example
3.6-1. The optimum occurs at point C (x; = 3.2, x; = 1.6, z = 128). Changes in revenue units
(i.e., objective-function coefficients) will change the slope of z. However, as can be seen from the
figure, the optimum solution will remain al point C so long as the objective function lies between
lines BF and DE, the two constraints that define the optimum point. This means that there is a
range for the coefficients of the objective function that will keep the optimum solution un-
changed at C.

-
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FIGURE 3.13
Graphical sensitivity of optimal solution to chanpes in the revenue units (coefficients of the objective function)

We can write the objective function in the general format
Maximize z = 1, + ¢pxy

Imagine now that the line z is pivoted at € and that i can rotate clockwise and counterclockwise.
The optimum solution will remain at point Csolengas z = ¢ + ¢x; lies between the two lines
Xy + 3x; = 8 and 2x; + x, = 8. This means that the ratio & can vary between % and % which
yields the following condition:

€y
= — =

2

[l AN

I
or 333 = L =2
&

Lt =

This information can provide immediate answers regarding the optimum solution as the follow-
ing questions demonstrate:

Question L. Suppose that the unit revenues for products 1 and 2 are changed to $35 and $25, re-
spectively. Will the current optimum remain the same?
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The new objective function is
Maximize z = 35x; + 25x,

The solution at C will remain optima} because & = 3_5-2 = 1.4 remains within the optimality range
(.333,2). When the ratio falls outside this range, additioral calculations are needed to find the new
optimum {see Chapter 4). Notice that although the values of the variables at the optimum point C
remain unchanged, the optimum value of z changes to 35 X (3.2) + 25 X (1.6) = $152.00.

Question 2. Suppose that the unit revenue of product 2 is fixed at its current value of
¢; = $20.00. What is the associated range for ¢, the unit revenue for product 1 that will keep the
optimum unchanged?

Substituting ¢, = 20 in the condition } = § = 2, we get

X220 =¢=2X20

-

Or
667 =¢ =40
This range is referred to as the optimality range for ¢;, and it implicitly assumes that ¢; 1s fixed at

$20.00.
We can similarly determine the optimality range for ¢; by fixing the value of ¢; at $30.00. Thus,

6353O><3and0223—:?

15=¢ =9

As in the case of the right-hand side, all software packages provide the optimality ranges.
Section 3.6.4 shows how AMPL, Solver, and TOR A generate these results.

Remark. Although the material in this section has dealt only with two variables, the results
lay the foundation for the development of sensitivity analysis for the general LP problem in
Sections 3.6.2 and 3.6.3.

PROBLEM SET 3.6B

L. Consider Problem 1, Set 3.6a.
(a) Determine the optimality condition for £ that will keep the optimum unchanged.
(b} Determine the optimality ranges for ¢, and cg, assuming that the other coefficient is
kept constant at its present value,
(c) If the unit revenues ¢, and ¢p are changed simultaneously to $5 and $4, respectively,
determine the new optimum solution.
(d) If the changes in (c) are made one at a time, what can be said about the optimum
solution?
2. Inthe Reddy Mikks model of Example 2.2-1;

(a) Determine the range for the ratio of the unit revenue of exterior paint to the unit
revenue of interior pamt.

[




Ly w0

SN

3.6.2

3.6 SensitivftyAﬁaIysis 129

(b) If the revenue per ton of exterior paint remains constant at $5000 per ton, determine
the maximum unit revenue of interior paint that will keep the present optimum solu-
tion unchanged.

{c) If for marketing reasons the unit revenue of interior paint must be reduced to $3000,
will the current optimum production mix change?
*3. In Problem 2, Set 3.6a:
(a) Determine the optimality range for the unit revenue ratio of the two types of hats
that wiit keep the current optimum unchanged.

(b} Using the information in (b}, will the optimal solution change if the revenue per unit
is the same for both types?

Algebraic Sensitivity Analysis—Changes in the Right-Hand Side

In Section 3.6.1, we used the graphical solution to determine the dual prices (the unit
worths of resources) and their feasibility ranges. This section extends the analysis to the
general LP model. A numeric example (the TOYCO model) will be used to facilitate
the presentation.

Example 3.6-2 (TOYCO Model}

TOYCO assembles three types of toys—trains, trucks, and cars—using three operations. The
daily limits on the available times for the three operations are 430, 460, and 420 minutes, respec-
tively, and the revenues per unit of toy train, truck, and car are $3,$2, and $5, respectively. The as-
sembly times per train at the three operations are 1, 3, and 1 minutes, respectively. The
corresponding times per train and per car are (2,0,4) and (1, 2,0) minutes (a zero time indicates
that the operation is not used).

Letting x), x, and x3 represent the daily number of units assembled of trains, trucks, and
cars, respectively, the associated LP mode) is given as:

Maximize z = 3x, + 2x; + 5x3

subject to

X + 2x; + x3 = 430 (Operation 1)

3x + 2x3 = 460 (Operation 2)

xp + 4x, = 420 {Operation 3)
Xy, x5, %320

Using x4, x5, and x4 as the slack variables for the constraints of operations 1,2, and 3, respective-
ly, the optimum tabicau is

Basic X Xy X3 Xy ' Xg Solution
z 4 0 0 1 2 0 1350
xn -t 0 3 -5 0 100
x3 i 0 1 0 {0 230
X6 20 0 -2 11 20
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The solution recommends manufacturing 100 trucks and 230 cars but no trains. The associ-
ated revenue is $1350.

Determination of Dual Prices. The constraints of the model after adding the slack
variables x4, x5, and x4 can be written as fotlows:

x; + 2x; + x3+ x, =430 (Operation 1)
3x + 2xy + x5 = 460 ({Operation 2)
X, + 4x; + x¢ = 420 (Operation 3)
or
X, + 2x; + x3 =430 — x4 (Operation 1)
3x, + 2x3 = 460 — x5 {Operation 2)
x; + 4x, = 420 - x4 ({Operation 3)
With this representation, the slack variables have the same units (minutes) as the oper-
ation times. Thus, we can say that a one-minute decrease in the slack variable 1s equiva-
lent to a one-minute increase in the operation time.

We can use the information above to determine the dual prices from the z-equa-
tion in the optimal tableau:

z+ 4x1 + X4 + 2x5 + OX6 = 1350
This equation can be written as
z = 1350 — dx; — x4 — 2x5 — Oxg
= 1350 — 411 + I(‘”I4) + 2(“X5) + U(—xs)
Given that a decrease in the value of a slack variable i1s equivalent to an increase in its
operation time, we get
z = 1350 ~ 4x; + 1 X (increase in operation 1 time}

+ 2 X (increase in operation 2 time)

+ 0 X (increase in operation 3 time)
This equation reveals that {1) a one-minute increase in operation 1 time increases z by
$1. (2) a one-minute increase in operation 2 time increases z by $2, and (3) a one-

minute increase in operation 3 time does not change z.
To summarize, the z-row in the optimal tableau:

Basic  x, Xy X X3 Xs Xg Solution

¢ 4 0 T 01 2. 0 1350
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yields directly the dual prices, as the following table shows:

Optimal z-equation coefficient

Resource Slack variable of slack variable Dual price
Operation 1 £ 1 $1/min
Operation 2 X5 2 $2/min
Operation 3 Xg a $0/min

The zero dual price for operation 3 means that there is no economic advantage in
allocating more production time to this operation. The result makes sense because the
resource is already abundant, as is evident by the fact that the slack variable associated
with Operation 3 is positive (= 20) in the optimum solution. As for each of Operations
1 and 2, a one minute increase will improve revenue by $1 and 32, respectively. The
dual prices also indicate that, when allocating additional resources, Operation 2 may be
given higher priority because its dual price is twice as much as that of Operation L.

The computations above show how the dual prices are determined from the opti-
mai tableau for = constraints. For = constraints, the same idea remains applicable
except that the dual price will assume the opposite sign of that associated with the =
constraint. As for the case where the constraint is an equation, the determination of the
dual price from the optimal simplex tableau requires somewhat “involved” calcula-
tions as will be shown in Chapter 4.

Determination of the Feasibility Ranges. Having determined the dual prices, we show
next how the feasibility ranges in which they remain valid are determined. Let D), D,
and Ds be the changes (positive or negative) in the daily manufacturing time allocated
to operations 1,2, and 3, respectively. The mode] can be written as foliows: -

Maximize z = 3x; + 2x3 + 5x3
subject to
x; + 2x, + x3 =430 + Dy (Operation 1)
3x, + 2xy = 460 + D, (Operation 2)
X, + 4x,y = 420 + Dy (Operation 3)
Xy, X3, X3 = 0

We will consider the general case of making the changes simultaneously. The special
cases of making change one at a time are derived from these results.

The procedure is based on recomputing the optimum simplex tableau with the
modified right-hand side and then deriving the conditions that will keep the solution
feasible—that is, the nght-hand side of the optimum tableau remains nonnegative. To
show how the right-hand side is recomputed, we start by modifying the Solution col-
umn of the starting tableau using the new right-hand sides: 430 + Dy, 460 + D,, and
420 + D;. The starting tableau will thus appear as .
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Solution
Basic x X X3 RHS Dy Dy Dy
z -3 -2 -5 0
Xy 1 2 i 430
Xs 3 0 2 460
X6 1 4 0 420

The columns under Dy, Dy, and D are identical to those under the starting basic
colummps x4, x5, and x4 This means that when we carry out the same simplex iterations
asin the original model, the columns in the two groups must come out identical as well.
Effectively, the new optimal tableau will become

Solution
Basic X X2 X3 X4 Xs X5 RHS D.J Dg D3
z 4 0 0 1350
£ -3 1 0 100
X3 % 0 230
X 2 0 0 20

The new optimum tableau provides the following optimal solution:
= 1350 + D, + 2D,
x, =100 + 3D, — 3D,
X3 =230 + 1D,
xe =20 - 2D, + Dy + D,

Interestingly, as shown earlier, the new z-value confirms that the dual prices for opera-
tions 1,2, and 3 are 1,2, and 0, respectively.

The current solution remains feasible so long as all the variables are nonnegatwe
which leads to the following feasibility conditions:

=100 +3D — iD=
x3=230+iD, =0
xg=20—-2D,+ Dy, + Dy =0
Any simultaneous changes Dy, D,, and Dj that satisfy these inequalities will keep the

solution feasibie. If all the conditions are satisfied, then the new optimum solution can
be found through direct substitution of Dy, I, and £ in the equations given above.
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To illustrate the use of these conditions, suppose that the manufacturing time
available for operations 1,2, and 3 are 480, 440, and 410 minutes respectively Then, D; =
480 — 430 = 50, D, = 440 — 460 = 20, and Dy = 410 — 420 = —10. Substituting
in the feasibility conditions, we get

x; = 100 + 3(50) — 3(—20) = 130 > 0 (feasible)
X3 = 230 + 3(—20) = 220 > 0 (feasible)
xs =20 — 2(50) + (—20) + (-10) = —110 < 0 (infeasible)

The calculations show that xg; < 0, hence the current solution does not remain feasible.
Additional calculations will be needed to find the new solution. These calculations are
discussed in Chapter 4 as part of the post-optimal analysis.

Alternatively, if the changes in the resources are such that Dy = =30, D, = ~12,
and D5 = 10, then

xy = 100 +1(-30) — }(-12) =88 > 0 (feasible)
x3 =230 + 3(—12) = 224 > 0 (feasible)
xg =20 — 2(=30) + (=12} + (10) = 78 > 0 (feasible)

The new feasible solution is x; = 88, x; = 224, and xg = 68 with z = 3(0) + 2(88) +
5(224) = $1296. Notice that the optimum objective value can also be computed as
z = 1350 + 1(=30) + 2(—12) = $1296.

The given conditions can be specialized to produce the individual feasibility ranges
that result from changing the resources one at a time (as defined in Section 3.6.1).

Case 1. Change in operation 1 time from 460 to 460 + D) minutes. This change is equiv-
alent to setting I; = D3 = 0 in the simultaneous conditions, which yields

x; =100 + 3D, = 0= D, = —200
Xy = 230 > 0 = -200 = D] = 10
x(,=20—2D120=>D1510

Case 2. Change in operation 2 time from 430 t0 430 + D, minutes. This change is equiv-
alent to setting Dy = Dy = Q in the simultaneous conditions, which yields

X, =100 — 1D, = 0= D, = 400
X3 =230 +3iDy, = 0= Dy = —460 0 = —20 = D, = 400
g =20+ D=0 =D =-20

Case 3. Change in operation 3 time from 420 to 420 + D, minutes. This change is equiv-
alent to setting ) = D, = 0 in the simultaneous conditions, which yields

X2=100>0
X3 =230> 0 =-20=< Dy <
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We can now summarize the dual prices and their feasibility ranges for the
TOYCO modet as foliows:>

Resource amount (minutes)

Resource Dual price Feasibility range Minimum Current Maximum
Operation | 1 -200=D,= 10 230 430 440
Operation 2 2 =W =D, =400 440 440} 860
Operation 3 0 -20 =Dy oo 400 420 oo

It is important to notice that the dual prices will remain applicable for any
simultaneous changes that keep the solution feasible, even if the changes violate the indi-
vidual ranges. For example, the changes Dy = 30, D; = —12,and Dy = 100, will keep the
solution feasible even though D, = 30 violates the feasibility range —200 = D, < 10,as
the following computations show:

100 + 2(30) - 5(—12) = 118 > 0 (feasible)
X3 =230 + 3(-12) =224 > 0 (feasible)
xg =20 — 2(30) + (—12) + (100) = 48 > 0 {feasible)

This means that the dual prices will remain applicable, and we can compute the new
optimum objective value from the dual prices as z = 1350 + 1(30) + 2(~12) +
0(100) = $1356

The results above can be summarized as follows:

|

X2

1l

1. The dual prices remain valid so long as the changes D, i = 1,2,...,m, in the
right-hand sides of the constraints satisfy all the feasibility conditions when the
changes are simultaneous or fall within the feasibility ranges when the changes
are made individually.

2. For other situations where the dual prices are not valid because the simultaneous
feasibility conditions are not satisfied or because the individual feasibility ranges

are violated, the recourse is to either re-solve the problem with the new values of

D; or apply the post-optimal analysis presented in Chapter 4.

PROBLEM SET 3.6C*

1. Inthe TOYCO model, suppose that the changes D, D,, and D, are made simultaneously
in the three operations,
(a) If the availabilities of operations 1,2, and 3 are changed to 438, 500, and 410 minutes,
respectively, use the simultaneous conditions to show that the current basic solution

*Available LP packages usually present this information as standard output. Practically none provide the
case of simultaneous conditions, presumably because its display is cumbersome, particularly for large LDs.

“In this problem set, you may find it convenient to generate the optimal simplex tableau with TORA.
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remains feasible, and determine the change in the optimal revenue by using the opti-
mal dual prices.

(b) TIf the availabilities of the three operations are changed to 460, 440, and 380 minutes,
respectively, use the simultaneous conditions to show that the current basic solution
becomes infeasible.

Consider the TOYCO model.

(a) Suppose that any additional time for operation 1 beyond its current capacity of 430
minutes per day must be done on an overtime basis at $50 an hour. The hourly cost
includes both labor and the operation of the machine. [s it economically advanta-
geous 1o use overtime with operation 1?

(b) Suppose that the operator of operation 2 has agreed to work 2 hours of overtime
daily at $45 an hour. Additionally, the cost of the operation itself is $10 an hour.
What is the net effect of this activity on the daily revenue?

(¢) Isovertime needed for operation 37

(d) Suppose that the daily availability of operation 1 is increased to 440 minutes. Any
overtime used beyond the current maximum capacity will cost $40 an hour. Deter-
mine the new optimum solution, including the associated net revenue.

(e) Suppose that the availability of operation 2 is decreased by 15 minutes a day and
that the hourly cost of the operation during regular time is $30. Is it advantageous to
decrease the availability of operation 2?7

A company produces three products, A, B, and C. The sales volume for A4 is at least

50% of the total sales of all three products. However, the company cannot sell more

than 75 units of A4 per day. The three products use one raw material, of which the maxi-

mum daily availability is 240 Ib. The usage rates of the raw material are 2 Ib per unit of

A, 4 |b per unit of B, and 3 Ib per unit of C. The unit prices for A, B, and C are $20, $50,

and $35, respectively.

(a) Determine the optimal praoduct mix for the company.

(b) Determine the dual price of the raw material resource and its allowable range. If
available raw material is increased by 120 |b, determine the optimal solution and the
change in total revenue using the dual price.

{¢) Use the dual price to determine the effect of changing the maximum demand for
product A by £10 units.

A company that operates 10 hours a day manufactures three products on three sequen-
tial processes. The {ollowing table summarizes the data of the problem:

Minutes per unit

Product Process 1 Process 2 Process 3 Unit price
1 10 6 8 $4.50
2 5 B 10 $5.00
3 6 9 12 $4.00

(a) Determine the optimal product mix.
(b) Use the dual prices to prioritize the three processes for possible expansion.

(¢) If additional production hours can be allocated, what would be a fair cost per addi-
tional hour for each process?
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5.

*§.

The Continuing Education Division at the Ozark Community College offers a total of 30
courses each semester. The courses offered are usually of two types: practical, such as wood-
working, word processing, and car maintenance; and humanistic, such as history, music, and
fine arts. To satisfy the demands of the community, at least 10 courses of each type must be
offered each semester. The division estimates that the revenues of offering practical and hu-
manistic courses are approximately $1500 and $1008 per course, respectively.

(a) Devise an optimal course offering for the college.

(b) Show that the duval price of an additional course is $1500, which is the same as the
revenue per practical course. What does this result mean in terms of offering addi-
tional courses?

(¢) How many more courses can be offered while guaranteeing that each will contribute
$1500 to the total revenue?

(d) Determine the change in revenue resulting from increasing the minumum require-
ment of humanistics by one course.

Show & Sell can advertise its products on local radio and television (TV), or in newspa-
pers. The advertising budget is limited to $10,000 a month. Each minute of advertising on
radio costs $15 and each minute on TV costs $300. A newspaper ad costs $50. Show &
Sell likes to advertise on radio at least twice as much as on TV. In the meantime, the use
of at least 5 newspaper ads and no more than 400 minutes of radio advertising a month is
recommended. Past experience shows that advertising on TV is 50 times more effective
than on radio and 10 tirmes more effective than in newspapers.

(a) Determine the optimum allocation of the budget to the three media.
(b) Are the limits set on radio and newspaper advertising justifiable economically?

(¢) If the monthly budget is increased by 50%), would this resuit in a proportionate in-
crease in the overall effectiveness of advertising?
The Burroughs Garment Company manufactures men’s shirts and women’s blouses for
Walmark Discount Stores. Walmark will accept all the production supplied by Burroughs.
The production process includes cutting, sewing, and packaging. Burroughs employs 25
workers in the cutting department, 35 in the sewing department, and 5 in the packaging
department. The factory works one 8-hour shift, 5 days a week. The following table gives
the time requirements and prices peg unit for the two garments:

Minutes per unit

Garment Cutting Sewing Packaging Unit price (3)

Shicts 20 70 12 8.00
Blouses 60 60 4 12.00

(a) Determine the optimal weekly production schedule for Burroughs.

(b) Determine the worth of one hour of cutting, sewing, and packaging in terms of the
total revenue.

{¢) If overtime can be used in cutting and sewing, what is the maximum hourly rate Bur-
roughs should pay for overtime?

ChemLabs uses raw materials J and {7 to produce two domestic cleaning solutions, A and

B.The daily availabilities of raw materials [ and I are 150 and 145 units, respectively.

One unit of solution A consumes .5 unit of raw material [ and .6 unit of raw materiat /{,

and one unit of solution B uses .5 unit of raw material / and .4 unit of raw material {1, The

T e ety g
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prices per unit of solutions A and B are $8 and $10, respectively. The daily demand for so-
lution A lies between 30 and 150 units, and that for solution B between 40 and 200 units.

(a) Find the optimal amounts of A and B that ChemLab should produce.

(k) Use the dual prices to determine which demand [imits on products A and 8 should
be relaxed to improve profitability.

(¢} If additional units of raw material can be acquired at $20 per unit, is this advisable?
Explain.

(d) A suggestion is made to increase raw material /f by 25% to remove a bottleneck in
production. Is this advisable? Explain.

. An assembly line consisting of three consecutive workstations produces two radio mod-

els: DiGi-1 and DiGi-2. The following table provides the assembly times for the three
workstations.

Minutes per unit

Workstation DiGi-I DiGi-2

1 6 4
5 4
3 4 6

The daily maintenance for workstations 1,2, and 3 consumes 10%, 14%, and 12%, re-
spectively, of the maximum 480 minutes available for each workstation each day.

(a) The company wishes to determine the optimal product mix that will minimize the
idle (or unused) times in the three workstations. Determine the optimum utilization
of the workstations. [Hint: Express the sum of the idle times (slacks) for the three
operations in terms of the original variables.]

(b) Determine the worth of decreasing the daily maintenance time for each workstation
by 1 percentage point.

{c) Itis proposed that the operation time for all three workstations be increased to 600
minutes per day at the additional cost of $1.50 per minute. Can this proposal be im-
proved?

16. The Gutchi Company manufactures purses, shaving bags, and backpacks. The construc-

tion of the three products requires leather and synthetics, with leather being the limiting
raw material. The production process uses two types of skilled tabor: sewing and finish-
ing. The following table gives the availability of the resources, their usage by the three
products, and the prices per unit.

Resource requirements per unii

Resource FPurse Bag Backpack Daily availability
Leather {f®) 2 1 3 42
Sewing (hr) 2 1 2 40
Finishing (hr) 1 S 1 45

Price (3) 24 22 45

Formulate the problem as a linear program and find the optimum solution. Next, indicate
whether the following changes in the resources will keep the current solution feasible.
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For the cases where feasibility is maintained, determine the new optimum solution
(values of the variables and the objective function).

(a)
)
(<)
@
(e)
0
(2)

Available leather is increased to 45 ft?.

Available leather is decreased by 1 ft%.

Available sewing hours are changed to 38 hours.

Available sewing hours are changed to 46 hours.

Available finishing hours are decreased to 15 hours.

Available finishing hours are increased to 30 hours,

Would you recommend hiring an additional sewing worker at $15 an hour?

HiDec produces two models of electronic gadgets that use resistors, capacitors, and chips.
The following table summarizes the data of the situation:

Unit resource requirements

Resource Model 1 {units) Model 2 (units) Maxinum avaitability {units)
Resistor 2 3 1200

Capacitor 2 i 1000

Chips 0 4 800

Unit price (3) 3 4

Let x; and v, be the amounts produced of Models 1 and 2, respectively. Following ate the
LP mode} and its associated optimal simplex tableau.

Maximize z = 3xy + 4x,

subject to
2xy + 3x; = 1200 (Resistors)
2x; + x; = 1000 (Capacitors)
4x, = 800 (Chips)
X, =0
Basic x| B 5 5y 53 Solution
z 0 0 ; : 0 1750
x 1 0 - o0 450
5 0 0 -2 21 400
x 0 1 R S 100
*{a} Determine the status of each resource.
*(b) In terms of the optimal revenue, determine the duval prices for the resistors, capaci-
tors, and chips.
(¢) Determine the feasibility ranges for the duat prices obtained in (b).
(d} If the available number of resistors is increased to 1300 units, find the new optimum

solution.
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*(e) If the available number of chips is reduced to 350 units, will you be able to deter-
mine the new optimum solution directly from the given information? Explain.

() If the availability of capacitors is limited by the feasibility range computed in (c),
determine the corresponding range of the optimal revenue and the corresponding
ranges for the numbers of units to be produced of Models 1 and 2.

(g) A new contractor is offering to sell HiDec additional resistors at 40 cents each, but
only if HiDec would purchase at least 500 units. Should HiDec accept the offer?

12, The 100% feasibility rule. A simplified rule based on the individual changes Dy, D, .. .,
and D, in the right-hand side of the constraints can be used to test whether or not
simultaneous changes will maintain the feasibility of the current solution. Assume that the
right-hand side b; of constraint { is changed to b; + D;one at a time,and that p; = D, = g
is the corresponding feasibility range obtained by using the procedure in Section 3.6.2.
By definition, we have pi = 0 {g; = 0) because it represents the maximum allowable
decrease (increase) in b;. Next, define #; to equal % if [); is negative and %" if D; is positive.
By definition, we have 0 = r; £ 1. The 100% rule thus says that, given the changes
Dy, Dy, ..., and D, then a sufficient (but not necessary) condition for the current solution
to remain feasible isthat ry +  + -+ + 7, = 1, If the condition is not satisfied, then the
current solution may or may not remain feasible. The rule is not applicable if D, falls out-
side the vange {p;, g;)-

In reality, the 100% rule is too weak to be consistently useful. Even in the cases where
feasibility can be confirmed, we still need to obtain the new solution using the regular
simplex feasibility conditions. Besides, the direct calculations associated with simultane-
ous changes given in Section 3.6.2 are straightforward and manageable.

To demonstrate the weakness of the rule, apply it to parts {a) and (b} of Problem 1in
this set. The ruje fails to confirm the feasibility of the solution in (a) and does not apply
in (b} because the changes in D; are outside the admissible ranges. Problem 13 {urther
demonstrates this point.

13. Consider the problem
Maximize z = x; + x;
subject to
le + Xa = 6
x; +2x, 26
X3 4+ X9 =0
(a) Show that the optimal basic soluticn includes both x; and x; and that the feasibility
ranges for the two constraints, considered one at a time, are =3 =< D; = 6 and
-3=D =6
*(b) Suppose that the two resources are increased simultancously by A > 0 each. First,
show that the basic solution remains feasible for all A > 0. Next, show that the

100% rule will confirm feasibility only if the increase is in the range 0 < A =3
units. Otherwise, the rule fails for 3 << A =< 6 and does not apply for A > 6.

Algebraic Sensitivity Analysis—Objective Function

In Section 3.6.1, we used graphical sensitivity analysis to determine the conditions that
will maintain the optimality of a two-variable LP solution. In this section, we extend
these ideas to the general LP problem.
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Definition of Reduced Cost. To facilitate the explanation of the objective function
sensitivity analysis, first we need to define reduced costs. In the TOYCO model
(Example 3.6-2), the objective z-equation in the optimal tableau is

z + 4x; + x4+ 2x5 = 1350
or
z = 1350 — 4xy — x4 — 2x;

The optimal solution does not recommend the production of toy trains {(x; = 0).
This recommendation is confirmed by the information in the z-equation because each
unijt increase in x, above its current zero level will decrease the value of z by $4 —
namely,z = 1350 — 4 X (1) — 1 X (0) — 2 X (0) = §1346.

We can think of the coefficient of x| in the z-equation (= 4) as a unit cost be-
cause it causes a reduction in the revenue z. But where does this “cost” come from? We
know that x; has a unit revenue of $3 in the original model. We also know that each toy
train consumes resources (operations fime), which in turn incur cost. Thus, the “attrac-
tiveness” of x, from the standpoint of optimization depends on the relative values of
the revenue per unit and the cost of the resources consumed by one unit. This relation-
ship is formalized in the LP literature by defining the reduced cost as

(Reduced cost) 3 (Cost of consumed

) ) ) — (Revenue per unit})
per untt resources per unit

To appreciate the significance of this definution, in the original TOYCO model
the revenue per unit for toy trucks (= $2} is less than that for toy trains (= $3). Yet the
optimal solution elects to manufacture toy trucks (x, = 100 units) and no toy trains
(x; = 0). The reason for this (seemingly nonintuitive) result is that the unit cost of the
resources used by toy trucks (i.e., operations time) is smaller than its unit price. The op-
posite applies in the case of toy trains.

With the given definition of reduced cost we can now see that an unprofitable
variable (such as x|) can be made profitable in two ways:

1. By increasing the unit revenue.
2. By decreasing the unit cost of consumed resources.

In most real-life situations, the price per unit may not be a viable option because its
value is dictated by market conditions. The real option then is to reduce the consump-
tion of resources, perhaps by making the production process more efficient, as will be
shown in Chapter 4.

Determination of the Qptimality Ranges. We now turn our attention to determiniag
the conditions that will keep an optimal solution unchanged. The presentation is based
on the definition of reduced cost.

In the TOYCO model, let d,, d;, and d; represent the change in unit revenues for
toy trucks, trains, and cars, respectively. The objective function then becomes

Maximize z = (3 + d))x; + (2 + dy)xy + (5 + d3}x;
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As we did for the right-hand side sensitivity analysis in Section 3.6.2, we wall first
deal with the general situation in which all the coefficients of the objective function are
changed simultaneously and then specialize the results to the one-at-a-time case.

With the simultaneous changes, the z-row in the starting tableau appears as:

Basic Xy Xy X3 X4 X5 xig Solution

Z "‘3_d| —2_d2 _5—d3 0 0 0 0

When we generate the simplex tableaus using the same sequence of entering and
leaving variables in the original model (before the changes d ; are introduced), the op-
timal iteration will appear as follows (convince yourself that this is indeed the case by
carrying out the simplex row operations):

Basic X X3 X3 Xy Xs X Solution
z 4-tdy+ddy—dy 0 0 1+3dy 2-3dy+idy 0 1350 + 1004, + 230d;
X -1 0 : -1 0 100
3 $ 0 1 0 3 0 230
X¢ -1 0 0 -2 1 1 20

The new optimal tableau is exactly the same as in the original optimal tableau except
that the reduced costs (z-equation coefficients) have changed. This means that changes
in the objective-function coefficients can affect the optimality of the problem only.

You really do not need to carry out the row operation to compute the new re-
duced costs. An examination of the new z-row shows that the coefficients of d; are
taken directly from the constraint coefficients of the optumum tableau. A convenient
way for computing the new reduced cost is to add a new top row and a new leftmost
column to the optimum tableau, as shown by the shaded areas below. The entries in the
top row are the change d; associated with each variable. For the leftmost column, the
entries are 1 in the z-row and the associated d; in the row of each basic variable. Keep
in mind that d; = 0 for the slack vanables.

Basic x, X3 X3 Xq X5 X5 Solution
z 4 0 0 1 2 0 1350
X -1 1 0 P4 0 100
x3 0 1 0 ! 0 230
Xg 2 0 0 ~2 1 1 20

Now, to compute the new reduced cost for any variable (or the value of z),
multiply the elements of its column by the corresponding elements in the leftmost
column, add them up, and subtract the top-row element from the sum. For example,
for x,, we have
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Left column X {x,-column X left-column)
4 4 %1
-1 )
4 §<2
3 3
2 3493
2 2%0
3

Note that the application of these computations to the basic variables will always pro-
duce a zero reduced cost, a proven theoretical result. Also, applying the same rule to
the Solution column produces z = 1350 + 1004, + 230d,.

Because we are dealing with a maximization problem, the current solution re-
mains optimal so long as the new reduced costs (z-equation coefficients) remain non-
negative for all the nonbasic variables. We thus have the following optimality conditions
corresponding to nonbasic x;, x4, and xs:

4_%d2+%d3_d120
1+idy=0
2-1d,+1d, =0

These conditions must be satisfied simudtaneously 10 maintain the optimality of the
current optimum.

To illustrate the use of these conditions, suppose that the objective function of
TOYCO is changed from

Maximize z = 3x; + 2x; + 5x;
to
Maximize z = le -+ Xs =+ 6I3

Then, d; =2 -3=-§1,d,=1~2=—§%, and dy = 6 — 5 = §1. Substitution in
the given conditions yields

4 —idy+3ds - dy =4 — H-1) + 2(1) - (-1) = 675 > 0 (satisfied)
L+id,=1+3(-1)=5>0 (satisfied)
2-4dy +3d5=2-H~1)+3(1)=275>0 (satisfied)

The results show that the proposed changes will keep the current solution (x; = 0,
xy = 100, x5 = 230) optimal. Hence no further calculations are needed, except that
the objective value will change to z = 1350 + 1004; + 230d; = 1350 + 100 X -1 +
230 X 1 = $1480. If any of the conditions is not satisfied, a new solution must be de-
termined (see Chapter 4).
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The discussion so far has dealt with the maximization case. The only difference in
the minimization case is that the reduced costs (z-equations coefficients) must be =0
to maintain optimality.

The general optimality conditions can be used to determine the special case
where the changes 4; occur one at a time instead of simultancously. This analysis is
equivalent to considering the following three cases:

1. Maximize z = (3 + dj}x; + 2x; + 5x3
2. Maximize z = 3x; + (2 + dy)x; + 5x5
3. Maximize z = 3x; + 2x; + (5 + d3)x;3

The individual conditions can be accounted for as special cases of the simultane-
5
ous case.

Case 1. Set dy = dy = ( in the simultaneous conditious, which gives
4 —dy=0=-00<d =4

Case 2. Set dy = d; = 01in the simultaneous conditions, which gives

4"’%d220=>d2516
1+3d,=0=>dy=~2r=>-2=<d) =8
2-id,=0=4,=<8

Case 3. Set d| = d; = 0in the simultaneous conditions, which gives
4 +%d3:—:" 0=:’d3 = ‘*‘83‘
24 3dy 2 0=d; = —4

vV

8
}=>—§£d3<oo

The given individual conditions can be transtated in terms of the total unit rev-
enue. For example, for toy trucks (variable x;), the total unit revenue is 2 + d; and the
associated condition —2 = d, = § translates to

2+(-2)=2+d,=2+8
or
$0 = (Unit revenue of toy truck) < §10

This condition assumes that the unit revenues for toy trains and toy cars remain fixed
at $3 and §5, respectively.

The allowable range (30, $10) indicates that the unit revenue of toy trucks (vari-
able x,) can be as low as $0 or as high as $10 without changing the curzrent optimum,
x; = 0, x5 = 100, x3 = 230. The total revenue will change to 1350 + 1004,, however.

SThe individual ranges are standard outputs in all LP software. Simultaneous conditions usually are not part
of the output, presumably because they are cumbersome for large problems.
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It is important to notice that the changes d;, d5, and ds may be within their allow-

able individual ranges without satisfying the simultaneous conditions, and vice versa.
For example, consider

Maximize z = 6x, + 8x; + 3x,

Here d,=6-3=383,d,=8-2=3§6, and d3 =3 ~ 5= —32, which are all
within the permissible individual ranges (— 00 < d,=4,-2=d, =8, and
——% = dy < 00). However, the corresponding simultaneous conditions yield

4 - 34, +3dy — dy =4 — 3(6) + 3(—2) - 3 = =35 < 0 (not satisfied)
1+3d,=1+46)=4>0 (satisfied)
2-gdy+3d3=2-5(6)+3(-2)=-5<0 {not satisfied)

The results above can be summarized as follows:

The optimal values of the variables remain unchanged so long as the changes
di,j =1,2,...,n, in the objective function coefficients satisfy all the optimality
conditions when the changes are simultaneous or fall within the optimality
ranges when a change 1s made individually.

For other situations where the simultaneous optimality conditions are not satis-
fied or the individual feasibility ranges are violated, the recourse is to either re-
solve the problem with the new values of d; or apply the post-optimal analysis
presented in Chapter 4.

PROBLEM SET 3.6D°

L

*2.

In the TOYCO model, determine if the current solution will change in each of the follow-

ing cases:

() z2=2x)+ xp + 4x4

(i) z =3x; + 6xy + x4

(iti) z = 8xy + 3x, + 9x3

B&K grocery store sells three types of soft drinks: the brand names Al Cola and A2 Cola

and the cheaper store brand BK Cola. The price per can for Al, A2, and BK are 80, 70,

and €0 cents, respectively. On the average, the store sells no more than 500 cans of all

colas a day. Although A1 is a recognized brand name, customess tend to buy more A2

and BK because they are cheaper. It is estimated that at least 100 cans of Al are sold

datly and that A2 and BK combined outsell Al by a margin of at least 4.2.

(a) Show that the optimum solution does not call for selling the A3 brand.

(b} By how much should the price per can of A3 be increased to be sold by B&K?

(c) To be competitive with other stores, B&K decided to lower the price on all three
types of cola by 5 cents per can. Recompute the reduced costs to determine if this
promotion will change the current optimum sclution.

®In this problem set, you may find it convenient 10 generate the optimal simplex tableau with TORA.
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Baba Furniture Company employs four carpenters for 10 days to assemble tables and
chairs. It takes 2 person-hours to assemble a table and .5 person-hour to assemble a chair.
Customers usually buy one table and four to six chairs. The prices are $135 per table and
$50 per chair. The company operates one 8-hour shift a day.

(a) Determine the 10-day optimal production mix.

(b) Tf the present unit prices per table and chair are each reduced by 10%, use sensitivi-
ty analysis to determine if the optimum solution obtained in (a) will change.

(c) If the present unit prices per table and chair are changed to $120 and $25, will the
solution in {a) change?

The Bank of Elkins is allocating 2 maximum of $200,000 for personal and car loans dur-

ing the next month. The bank charges 14% for personal loans and 12% for car loans.

Both types of loans are repaid at the end of a 1-year period. Experience shows that about

3% of personal loans and 2% of car loans are not repaid. The bank usually allocates at

teast twice as much to car loans as 1o personal loans.

(a) Dretermine the optimal allocation of funds between the two loans and the net rate of
return on all the loans.

(b) If the percentages of personal and car loans are changed 10 4% and 3%, respectively,
use sensitivity analysis to determine if the optimum sotution in (a) will change.

Electra produces four types of electric motors, each on a separate assembly line. The re-
spective capacities of the lines are 500, 500, 800, and 750 motors per day. Type 1 motor
uses 8 units of a certain electronic component, type 2 motor uses 5 units, type 3 motor
uses 4 units, and type 4 motor uses 6 units. The supplier of the component can provide
8000 pieces a day. The prices per motor for the respective types are $60, $40, $25, $30.

(a) Determine the optimum daily production mix.

(b) The present production schedule meets Electra’s needs. However, because of com-
petition, Electra may need to lower the price of type 2 motor. What is the most re-
duction that can be effected without changing the present production schedule?

(¢) Electra has decided to slash the price of all motor types by 25%. Use sensitivity
analysis to determine if the optimum solution remains unchanged.

(d) Currently, type 4 motor is not produced. By how much should its price be increased
to be included in the production scheduie?

Popeye Canning is contracted fo receive daily 60,000 Ib of ripe tomatoes at 7 cents per
pound from which it produces canned tomato juice, tomato sauce, and tomate paste. The
canned products are packaged in 24-can cases. A can of juice uses 1 Ib of fresh tomatoes,
a can of sauce usesé— [b, and a can of paste uses f 1b. The company’s daily share of the
marke1 is limited to 2000 cases of juice, 5000 cases of sauce, and 6000 cases of paste. The
wholesale prices per case of juice, sauce, and pasie are $21, $9, and $12, respectively.

(a) Develop an optimum daily production program for Fopeye.

(b) 1If the price per case for Juice and paste remains fixed as given in the problem, use
sensitivity analysis to determine the unit price range Popeye should charge for a case
of sauce to keep the optimum product mix unchanged.

Dean’s Furniture Company assembles regular and deluxe kitchen cabinets from precut
lumber. The regular cabinets are painted white, and the deluxe are varnished. Both paint-
ing and varnishing are carried out in one department, The daily capacity of the assembly
department is 200 regular cabinets and 150 deluxe. Varnishing a deluxe unit takes twice
as much time as painting a regular one. If the paintingfvarnishing department is dedicat-
ed to the deluxe units only, it can complete 180 units daily. The company estimates that
the revenues per unit for the regular and deluxe cabinets are $100 and $140, respectively.
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(a) Formuiate the problem as a linear program and find the optimal production sched-
ule per day.

(b) Suppose that competition dictates that the price per unit of each of regular and
deluxe cabinets be reduced to $80. Use sensitivity analysis to determine whether or
not the optimum solution in (a) remains unchanged.

8. The 100% Optimality Rule. A rule similar to the 100% feasibility rule outlined in Problem
12, Set 3.6¢, can also be developed for testing the effect of simultaneously changing all ¢;
to¢; +d;,j =1,2,..., n, on the optimality of the current solution. Suppose that
u; = d; = v;is the optimality range obtained as a result of changing each ¢; to ¢; + 4;
one at a time, using the procedure in Section 3.6.3. In this case, ; = 0 (v; = 0), because
it represents the maximwn allowable decrease (increase) in ¢; that will keep the current

solution optimal. For the cases where ; = d; = v;, define r; equal to %ﬁ if d; is positive

and ﬁ—’: if d; is negative. By definition,0 = 7; = 1. The 100% rule says that a sufficient (but

not necessary) condition for the current solution to remain optimal is that

o+ o+ - 4, = 1 If the condition is not satisfied, the current solution may or may

not xemain optimal. The rule does not apply if &, falls outside the specified ranges.
Demonstrate that the 100% optimality rule is too weak to be consistently reliable as a

decision-making toecl by applying it to the following cases:

(a) Parts (i) and (Gii) of Problem 1.

(b) Part (b) of Problem 7.

Sensitivity Analysis with TORA, Solver, and AMPL

We now have all the tools needed to decipher the output provided by LP sofiware, par-
ticularly with regard to sensitivity analysis. We will use the TOYCO example to demon-
strate the TORA, Solver, and AMPL output.

TORA’s LP output report provides the sensitivity analysis data automatically as
shown in Figure 3.14 (file toraTOYCO.txt). The output inctudes the reduced costs and
the dual prices as well as their allowable optimality and feasibility ranges.

FIGURE 3.14
TORA sensitivity analysis for the TOYCO model

**xZensitivity Analysis»®**

Variable CurrObjCoeff MinObjCoeff MaxObjiCoeff Reduced Cost
x1: 3.080 ~infinity 7.00 4.00
x2: 2.00 0.00 10.00 0.00
X3 500 2.33 infinity 0.00
Constraint Curr RHS Min RHS Max RHS Dual Price
1(«): 430.00 230.00 440.00 1.00
2(<}: 460,00 440.00 860.00 2.00

3(<): 420.00 400.00 infinity 0.00
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x1 x2 3 | it o[BS (TSUMFRODUCT(BS.05. 891208 121E6°88

Y trains | erucks | cars | Yotals 1 Limits | |e1zi=ts
7540b|active 3 2 5 1350} L ; e
6+ |QOperation 1 1 2 1T -1 430 1=<=| 4 r Hame Cells ot i
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10-JOutput results; R 1 £5 —emd

48| Adjustable Celis

Final Reduced Objective Allowable Aliowable

Cell Name Value Cost Coefficient Increase Decrease
38812 Solution x1 g 4 3 4 1E+30
$C512 Solution x2 100 0 2 8 2
30812 Selution x3 230 ] 5 1E+430 2.GG6666667

13: Constraints

Final Shadow Constraint Allowable Allowable

Cell Hame Value Price R.H. Side Increase Decrease
SE$6 Operation 1 Totals 430 1 430 10 200
SES7 Operation 2 Totals 460 2 460 400 20
$E$3 Operation 3 Totals 400 0 420 JE+30 20

FIGURE 3.15
Excel Solver sensitivity analysis ceport for the TOYCO model

Figure 3.15 provides the Solver TOYCO model (file solverTOYCQ.xIs) and its
sensitivity analysis report. After you click Solve in the Solver Parameters dialogue box,
the new dialogue box Solver Results will give you the opportunity to request further
details about the solution, including the important sensitivity analysis report. The re-
port will be stored in a separate Excel sheet, as shown by the choices on the bottom of
the screen. You can then click Sensitivity Report 1 to view the results. The report is sim-
ilar to TORA's with three exceptions: (1) The reduced cost carries an opposite sign. (2)
The name shadow price replaces the name dual price. (3) The optimality ranges are for the
changes d; and D; rather than for the total objective coefficients and constraints on the
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right-hand side. The differences are minor and the interpretation of the results remains
the same.

In AMPL, the sensitivity analysis report is readily available. File amplTOYCO.txt
provides the code necessary to determine the sensitivity analysis output. It requires the
following additional statements:

option sclver cplex;
option cplex_options 'sensitivity’';

solve;
e sensitivity analysis

display oper.down, oper.current, oper.up, oper.dual>a.out;
display x.down, x.current,x.up, x.rc>a.out.;

The CPLEX option statements are needed to be able to obtain the standard sen-
sitivity analysis report. In the TOYCO model, the indexed variables and constraints use
the root names x and oper, respectively. Using these names, the suggestive suffixes
.down, .current, and .up in the display statements automatically generate the for-
matted sensitivity analysis report in Figure 3.16. The suffixes .dual and .rc provide
the dual price and the reduced cost.

An alternative to AMPL’s standard sensitivity analysis report is to actually solve
the LP model for a range of values for the objective coefficients and the right-hand
side of the constraints. AMPL automates this process through the use of commands (see
Section A.7). Suppose in the TOYCO model, file amp!TOY CO.txt, that we want to in-
vestigate the effect of making changes in b (1], the total available time for operation 1.
We can do so by moving solve and display from amplTOYCO.txt 10 a new file, which

we arbitrarly name analysis.txt:

repeat while b[1)<=500
{

solve;

display 2z, x;

let (1) :=b[1]+1;
Yi

Next, enter the following lines at the ampl prompt:
ampl:model amplTOYCO. txt;
ampl: comnands analysis. txt;

: oper.down oper.current oper.up oper.dual = FIGURE 3.16
1 230 430 440 1 AMPL sensitivity analysis report
2 440 460 860 2 for the TOYCO model
3 400 420 le+20 0
: x. down X, current X.up X.¥c 1=
1 -le+20 3 7 -4
2 Q 2 10 Q
2.33333 ) 1le+20 0

W

—_— et i
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The first line will provide the model and its data and the second line will provide the
optimum solutions starting with b (1) at 430 (the initial value given in amplTOYCO.txt)
and continuing in increments of 1 until b[1) reaches 500. An examination of the out-
put will then allow us to study the sensitivity of the optimum solution to changes in
bi11. Similar procedures can be followed with other coefficients including the case of
making stinultaneous changes.

PROBLEM SET 3.6E7

1.

2,

*35.

*9,

10.

Consider Problem 1, Set 2.3¢ (Chapter 2). Use the dual price to decide if it is worthwhile

1o increase the funding for year 4.

Consider Problem 2, Set 2.3c (Chapter 2).

(a) Use the dual prices to determine the overall return on investment.

{b) If you wish to spend $1000 on pleasure at the end of year 1, how would this affect
the accumulated amount at the start of year 57

Consider Problem 3, Set 2.3¢ (Chapter 2).

(a) Give an economic interpretation of the dual prices of the model.

{b) Show how the dual price associated with the upper bound on borrowed money at
the beginning of the third quarter can be derived from the dual prices associated
with the balance equations representing the in-out cash flow at the five designated
dates of the year.

Consider Problem 4, Set 2.3¢ (Chapter 2). Use the dual prices to determine the rate of re-

turn associated with each year,

Consider Problem 5, Set 2.3¢ {Chapter 2}. Use the dual price to determine if it is worth-

while for the executive to invest more money in the plans.

Consider Problem 6, Set 2.3¢ (Chapter 2). Use the dual price to decide if it is advisable

for the gambler to bet additional money.

Consider Problem 1, Set 2.3d (Chapter 2). Relate the dual prices to the unit production

costs of the model.

Consider Problem 2, Set 2.3d (Chapter 2). Suppose that any additional capacity of ma-

chines 1 and 2 can be acquired only by using overtime. What is the maximum cost per

hour the company should be willing to incur for either machine?

Consider Problem 3, Set 2.3d (Chapter 2).

(a) Suppose that the manufacturer can purchase additional units of raw material A at
$12 per unit. Would it be advisable to do so?

(b) Would you recommend that the manufacturer purchase additional units of raw ma-
terial B at $5 per unit?

Consider Problem 10, Set 2.3e (Chapter 2).

(a) Which of the specification constraints impacts the optimum solution adversely?

(b) What is the most the company should pay per ton of each ore?

"Before answering the problems in this set, you are expected o generate the sensitivity analysis report using
AMPL, Solver, or TORA.
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4.1

CHAPTER 4

Duality and Post-Optimal
Analysis

Chapter Guide. Chapter 3 dealt with the sensttivity of the optimal solution by deter-
mining the ranges for the model parameters that will keep the optimum basic solution
unchanged. A natural sequel to sensitivity analysis is post-optimal analysis, where the
goal is to determine the new optimum that results from making targeted changes in the
model parameters. Although post-optimal analysis can be carried out using the simplex
tableau computations in Section 3.6, this chapter is based entirely on the dual problem.

At a minimum, you will need to study the dual problem and its economic inter-
pretation (Sections 4.1,4.2, and 4.3). The mathematical definition of the dual problem in
Section 4.1 is purely abstract. Yet, when you study Section 4.3, you will see that the dual
problem leads to intriguing economic interpretations of the LP model, including dical
prices and reduced costs. It also provides the foundation for the development of the new
dual simplex algorithm, a prerequisite for post-optimal analysis. The dual simplex algo-
rithm is also needed for integer programming in Chapter 9.

The generalized simplex algorithm in Section 4.4.2 is intended to show that the
stmplex method is not rigid, in the sense that you can modify the rules to handle prob-
lems that start both infeasible and nonoptimal. However, this material may be skipped
without loss of continuity.

You may use TORA’s interactive mode to reinforce your understanding of the
computational details of the dual simplex method.

This chapter includes 14 sotved examples, 56 end-of-section problems, and 2
cases. The cases are in Appendix E on the CD.

DEFINITION OF THE DUAL PROBLEM

The dual problem is an LP defined directly and systematically from the primal (or orig-
inal} LP model. The two problems are so closely related that the optimal solution of
one problem automaticalty provides the optimal solution to the other.

In most LP treatments, the dual is defined for various forms of the primal depend-
ing on the sense of optimization {maximization or minimization), types of constraints

151
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(=, =, or =), and orientation of the variables (nonnegative or unrestricted). This type
of treatment is somewhat confusing, and for this reason we offer a single definition that
automatically subsumes all forms of the primal.

Our definition of the dual problem requires expressing the primal problem in
the equation form presented in Section 3.1 (all the constraints are equations with
nonnegative right-hand side and all the variables are nonnegative}. This require-
ment is consistent with the format of the simplex starting tableau. Hence, any results
obtained from the primal optimal solution will apply directly to the associated dual
problem.

To show how the dual problem is constructed, define the primal in equation form
as follows:

"
Maximize or minimize z = Ecjxj
=1
J—

subject to

The vanables x;, j = 1,2,..., n, include the surplus, slack, and artificial variabies, if any.
Table 4.1 shows how the dual problem is constructed from the primal. Effectively,
we have

1. A dual variable is defined for each primal (constraint) equation.

2. A dual constraint is defined for each primal variable.

3. The constraint (cotumn) coefficients of a primal variable define the left-hand-
side coefficients of the dual constraint and its objective coefficient define the
right-hand side.

4. The objective coefficients of the dual equal the right-hand side of the primal con-
straint equations.

TABLE 4.1 Construction of the Dual from the Primal

Primal variables

X Ay X,

Dual variabies c c c Right-hand side

H 2 " ]

» ap apz Qi
¥ | 4y dy,
}'m ﬁ,,,) am?. IE‘Tﬂ-m

jth dual Dual objective

constraint coefficients
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TABLE 4.2 Rules for Constructing the Dual Problem

Dual problem
Primal problem
objective® QObjeciive Constraints iype Variables sign
Maximization Minimization = Unrestricted
Minimization Maximization = Unrestricted

* All primal constraints are equations with nonnegative right-hand side and all the variables are nonnegative.

The rules for determining the sense of optimization (maximization or minimization),
the type of the constraint (=, =, or =), and the sign of the dual variables are summarized
in Table 4.2. Note that the sense of optimization in the dual is always opposite to that of the
primal. An easy way to remember the constraint type in the dual (ie, = or = )isthatif
the dual objective is minimization (i.e., pointing down), then the constraints are all of the
type = (ie,pointing up). The opposite is true when the dual objective is maximization.

The following examples demonstrate the use of the rules in Table 4.2 and also
show that our definition incorporates all forms of the primal automaticaily.

Example 4.1-1

Primal Primal in equation form Dual variables
Maximize z = Sx; + 12x; + 4x; Maximize z = Sx; + 1223 + 4x; + O,
subject to subject to
x1+2x2+ x;ElO x,+2x2+ X3 + .r4=10 ¥
2):]_ X2+3X.3=8 le‘- x2+3x3+0x4=8 hr]
Xy, X9, X3 2 0 Xy, Xa, X3, X4 =0

Dual Problem
Minimize w = 10y + Sy;

subject to
2y - n=1
v+ 3y 4
n+om= 0
Yi, ¥ unrestricted

v

[

v

}=" {y = 0, y; unrestricted)

g .

Example 4.1-2

Primal Primal in equation form Dual variables
Minimize z = 15x; + 12x, Minimize z = 5%, + 12x; + Qxq + Ox,
subject to subject to
Xi+2.X2::_"3 x,+2xz- x3+0x4=3 ¥4
2o — 4, =5 25, -4, + 0y + x, =5 Vs
x|,x120 Xy X, X, Xy =0
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Dual Problem
Maximize w = 3y + 5y
subject to
»+ 2y =15
2y —4p =12
5N = 0
nE 0r=(n=20y=0)

¥1, ¥ unrestricted

Example 4.1-3

Primal Primal in equation form Dua?l variables

Substitute x; = x| — x}

Maximize z = S5x; + 6xy Maximize z = 5x7 - 5x7 + 6x;
subject to subject to
xp+ 2x;=5 X7 — x{ +2x =5 ¥
-xy+ 55,23 —x7+ xf+ 5% - x; =3 ¥
dx, + Tx, = 8 4x7 — 4xT + Txq +x,=8 "
x| unrestricted, x, = 0 X7, X, Xy, Xy, xq = 0

Dual Problem
Minimize z = 5y, + 3 + 8y

subject to
N ntanE 5}
= - + 4y =5
pt -ty esf O T T
2 +3p+ Tz 6
- = ¢
¥ = 0= (y unrestricted, y, = 0, y; = 0)

Y1, ¥p, ¥y unrestricted

The first and second constraints are reptaced by an equation. The general rule in this case is
that an unrestricted primal variable always corresponds to an equality dual constraini. Con-
versely, a primal equation produces an unrestricted dual variable, as the first primal constraint
demonstrates.

Summary of the Rules for Constructing the Dual. The general conclusion from the
preceding examples is that the variables and constraints in the primal and dual
problems are defined by the rules in Table 4.3. 1t is a good exercise to verify that these
explicit rules are subsumed by the general rules in Table 4.2.




F

4.1 Definition of the Dual Problemm 155

TABLE 4.3 Rules for Constructing the Dual Problem

Maximization problem Minimization problem
Constraints Variables
= ) =0
= = =0
= < Unrestricted
Variables Constraints
=0 = =
=0 = =
Unrestricted = =

Note that the table does not use the designation primal and dual. What matters

here is the sense of optimization. If the primal is maximization, then the dual is mini-
mization, and vice versa.

PROBLEM SET 4.1A

1.

*2.

In Example 4.1-1, derive the associated dual problem if the sense of optimization in the
primal problem is changed to minimization.

Ie Example 4.1-2, derive the associated dual problem given that the primal problem is
augmented with a third constraint, 3x; + x, = 4.

In Example 4.1-3, show that even if the sense of optimization in the primal is changed to
minimization, an unrestricted primal variable always corresponds to an equality dual
constraint.

Write the dual for each of the following primal problems:
{a) Maximize z = —5x; + 2x,
subject to
X + X3 = =2
2):] + 3X2 = 3

Xy, Xy = 0

(b) Minimize 2
subject 10

6)61 + 3XZ

6, -3x2+x3‘~‘_’2
3x1 +4I2+ x3:_“5
Xy, Xo, X3 = {
*(c}) Maximize z = x; + x,
subject 10
Zxy + x3 =75
Ixy—x=6

Xy, X3 unrestricted
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*5. Consider Example 4.1-1. The application of the simplex methoed to the primal requires
the use of an artificial variable in the second constraint of the standard primal to secure a
starting basic solution. Show that the presence of an artificial primal in equation form
variable does not affect the definition of the dual because it leads to a redundant dual
constraint.

6. True or False?

(a) The dual of the dual problem yields the original primal.

(b} If the primal constraint is originally in equation form, the corresponding dual vari-
able is necessarily unrestricted.

(¢) If the primal constraint is of the type =, the corresponding dual variable will be non-
negative (nonpositive) if the primal objective is maximization {reinimization).

(d) If the primal constraint is of the type =, the cortresponding dual variable will be non-
negative (nonpositive) if the primal objective is minimization (maximization).

{e) An uarestricted primal variable will resuit in an equality dual constraint.

PRIMAL-DUAL RELATIONSHIPS

Changes made in the original LP model will change the elements of the current opti-
mal tableau, which in tum may affect the optimality and/or the feasibility of the cur-
rent solution, This section introduces a number of primal-dual relationships that can be
used to recompute the elements of the optimal simplex tableau. These relationships
will form the basis for the economic interpretation of the LP model as well as for post-
optimality analysis.

This section starts with a brief review of matrices, a convenient tool for carrying
out the simplex tableau computations.

Review of Simple Matrix Operations

The simplex tableau computations use only three elementary matrix operations:
(row vector) X (matrix}, {matrix} X (column vector), and (scalar) X (matrix). These
operations are summarized here for convenience. First, we introduce some matrix
definitions:'

1. A matrix, A, of size (m X n) is a rectangular array of elements with m rows and
n columns.

2. A row vector,V,of size misa (1 X m) matrix.
3. A column vector, P, of size n is an {(n X 1) matrix.

These definitions can be represented mathematically as

an 212 : Ayn 21
a a : a

V= {(v,0....0,),A = 2 2 nlp= 2
aml ) : Lmn Pr

! Appendix D on the CD provides a more compiete review of matrices.
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L. (Row vector X matrix, VA). The operation is defined only if the size of the
row vector V equals the number of rows of A. In this case,

Fig L "
va = (Svan Soan., Sua,)
i=1 i=1 i=1

For example,

1 2
(11,22,33)13 4| ={(1 X11 +3 X22+5xX332X11+4X22+6 X33}
5 6/

= (242,308)

2. (Matrix X column vector, AP). The operation is defined only if the number
of columns of A equals the size of column vector P. In this case,

A
Eﬂlej
i=1

2.,a2p;
AP =] j=l
Zam_jpj
i=]
As an illustration, we have
11
(1 3 5) » _(1><11 +3><22+5X33)_(2A2)
2 4 6 - 2X 11 +4%X22+6xX33 308

3. (Sealar X matrix, «A). Given the scalar (or constant) quantity «, the multi-
plication operation a¢A will result in a matrix of the same size as A whose (7, j)th ele-
ment equals aa;;. For example, given & = 10,

1 2 3 10 20 30
(10)(4 5 6) a (40 50 60)

In general, ®’A = Aa. The same operation is extended equally to the multiplication of
vectors by scalars. For example, a2V = Va and of = Pa.

PROBLEM SET 4.2A

1. Consider the following matrices:
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In each of the following cases, indicate whether the given matrix operation is legitimate,
and, if 50, calculate the result.

*(a) AV,
(b) AR
(© AP,
@ VA
*((‘.) VQA
f) PPy
(g) VP

4.2.2 Simplex Tableau Layout

In Chapter 3, we followed a specific format for setting up the simplex tableau. This for-
mat is the basis for the development in this chapter.

Figure 4.1 gives a schematic representation of the starting and general simplex
tableaus. In the starting tableau, the constraint coefficients under the starting variables
form an identity matrix (all main-diagonal elements equal 1 and all off-diagonal ele-
ments equal zero). With this arrangement, subsequent iterations of the simplex tableau
generated by the Gauss-Jordan row operations (see Chapter 3) will modify the ele-
ments of the identity matrix to produce what is known as the inverse matrix. As we will
see in the remainder of this chapter, the inverse matrix is key to computing all the ele-
ments of the associated simplex tableau.

——my

FIGURE 4.1

Schematic representation of the starting and generai simplex tableaus

Starting variables

Objective z-row { |

[

Constraint
colunmins

NN

(Starting tableau)

Objective z-row { |

SRIEIRIEEIEE

Constraint
columns

(General iteration)
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PROBLEM SET 4.2B

1. Consider the optimal tableau of Example 3.3-1.
#(a) Identify the optimal inverse matrix.
(b) Show that the right-hand side equals the inverse multiplied by the original right-
hand side vector of the original constraints.
2. Repeat Problem 1 for the last tableau of Exampie 3.4-1.

Optimal Dual Solution

The primal and dual solutions are so closely related that the optimal solution of either
problem directly yields (with little additional computation) the optimal solution to the
other. Thus, in an LP model in which the number of variables is considerably smaller
than the number of constraints, computational savings may be realized by solving the
dual, from which the primal solution is determined automatically. This result follows
because the amount of simpiex computation depends largely (though not totally) on
the number of constraints (see Problem 2, Set 4.2¢).

This section provides two methods for determining the dual values. Note that the
dual of the dual is itself the primal, which means that the dual solution can also be used
to yield the optimal primal solution automatically.

Method L.
( Optimal value o f) . Optimal primal z-coefflcfnt of starting variable x;
dual variable y; - L ..

ual variable y Original objective coefficient of x;

Method 2,
Optimal values .. Rox.v v<?ctor of . Optimal primal
. original objective coefficients X .
of dual variables inverse

of optimal primal basic variables

The elements of the row vector must appear in the same order in which the basic vari-
ables are listed in the Basic column of the simplex tableau.

Example 4.2-1
Consider the following LP:
Maximize z = Sx; + 12x; + dx3

subject to
Xi+2x2+ XJEIO
ZX]_ - X + 3).33 = 8

X1, X3, 320
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To prepare the problem for sotution by the simplex method, we add a slack x4 in the first
constraint and an artificial R in the second. The resulting primal and the associated dual prob-
lemns are thus defined as follows:

Primal Dual

Maximize 7 = 5%, + 12x; + 4x; — MR Minimize w = 10y, + 8y

subject to subject (o
X 2+ x o+, =10 W2y xS
ZX|_I2+313 +R=28 2y,—y2212
Xy Xy X3 Xy, RZ 0 ht3p=zA
¥, =0

¥ = —M (= y; unrestricted)

Table 4.4 provides the optimal primal tableau.

We now show how the optimal dual values are determined using the two methods described
at the start of this section.

Method 1. [r Table 4.4, the starting primal variables x, and R uniguely correspond to the dual
variables y; and y,, respectively. Thus, we determine the optimum dual sojution as follows:

Starting primal basic variables X4 R

z-equation coefficients % —% + M

Original objective coefficient 0 -M

Dual variables n b

Optimal duat values Zio=2 oM+ (-M} = -1
5 3 5 3

Method 2. The optimal inverse matrix, highlighted under the starting variables x, and R, is
given in Table 4.4 as

Optimal inverse =

LAl Lafbe
LA Lal—

First, we note that the optimal primal variables are listed in the tablean in row order as x; and
then x,. This means that the elements of the original objective coefficients for the two variables
must appear in the same order~—namely,

(Original objective coefficients} = (Coefficient of x,, coefficient of ,fl)

= (12,5)

TABLE 4.4 Optimal Tableau of the Primal of Example 4.2-1

Basic x X3 x3 <R Solution
4
k4 ¢ 0 % 34%
Xa 0 1 —% %
X1 1 0 % 25_6
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Thus, the optimal dual values are computed as

Original objective

) %X (Optimal inverse
coefficients of x5, xl) (Op )

(Y. ¥2) = (

= (12,5)

Lal—= Lniita
bk La—

- 3.

Primal-dual objective values. Having shown how the optimal dual values are
determined, next we present the relationship between the primal and dual objective
values. For any pair of feasible primal and duat solutions,

( Objective value in the j - (Objective value in the)
maximization problem,/ ~ \minimization problem

At the optimum, the relationship holds as a strict equation. The relationship does not
specify which problem is primal and which is dual. Only the sense of optimization
(maximization or minimization) is important in this case.

The optimum cannot occur with z strictly less than w (t.e., z < w) because, no
matter how close z and w are, there is always room for improvement, which contradicts
optimality as Figure 4.2 demonstrates.

Example 4.2-2
In Example 4.2-1, (xi =0,x=0,x;3 = g) and (y, = 6, »» = 0) are feasible primal and dual so-
lutions. The associated values of the objective functions are

2= 5x) + 122, + 4x3 = 5(0) + 12(0) + 4(3) = 10}

w = 10y + 8y, = 10(6) + 8(0) = 60
Thus, z (= 10%] for the maximization probiem (primal) is less than w (= 60) for the minitnization
problem {dual). The optimum value of z (= 54%] falls within the range (10%, 60).

FIGURE 4.2

Relatioaship between maximum z and minimum w

Optimum

Maximize z Minimize w
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PROBLEM SET 4.2C

1. Find the optimal value of the objective function for the following problem by inspecting
only its dual. (Do not solve the dual by the simpiex method.)

Minimize z = 10x; + 4x; + 5x;
subject to
51] - 7):2 + 3):3 = 50

X1, Xy, X3 = 0

2. Solve the dual of the following problem, then find its optimal solution from the solution
of the dual. Does the solution of the dual offer computational advantages over solving
the primal directly?

Minimize z = Sxy + 6x; + 314
subject to
Sxy+ 5x; + 3x3 = 50
n+ x-— x3xz20
Tx; + 6xp — %x3 = 30
5+ S5x, 4+ 5x3 =35
2xy + 4x; — 15x3; = 10
12x; + 10xy = 90
X — 10x3 =20
Xy, Xz, x3= 0
*3, Consider the following LP:
Maximize z = 5x + 2x; + 3x,
subject to
Xy + 5xy + 2x4 = 30
Xy — Sxy — 6xy = 40
Xy, X3, x3 2 0

Given that the artiftcial variable x4 and the slack variable x5 form the starting basic variables
and that M was set equal to 100 when solving the problem, the optirmal tableau is given as ]

Basic Xy Xy X3 X4 X5 Solution
z ¢ 23 7 105 0 150
5 1 5 2 1 0 30 .
Xs 0 ~10 -8 -1 1 10 3

Write the associated dual problem and determine its optimal solution in two ways.
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4. Consider the foilowing LP:
Minimize z = 4x; + i
subject to
3+ =3
4x, + 3x, =2 6
Xy +2x, =4
x,x =0
The starting solution consists of artificial x4 and xs for the first and second constraints

and slack xg for the third constraint. Using A = 100 for the artificial variables, the opti-
mal tableau is given as

Basic xy X3 X3 X4 x5 Xg Solution
4 0 0 0 ~98.6 -100 -2 34
x i 0 0 4 0 -2 4
Xz 0 1 0 2 0 6 1.8
X3 0 0 1 1 -1 1 1.0

Write the associated dual problem and determine its optimal solution in two ways.
5. Consider the following LP:

Maximize z = 2x; + 4x; + 4x3 — 3xy
subject to

x|+ x2+x3 =4
X + 4dx, + x4y =8
Xy, X2, X3, x‘tgo

Using x5 and x4 as starting variables, the optimal tableau is given as

Basic x) X3 X3 X4 Solution
z 2 0 0 3 16
X3 75 0 1 -.25 2
Xy 25 1 .25 2

Write the associated dual problem and determine its optimal solution in two ways,
*6. Consider the {ollowing LP:

Maximize z = x; + 5x; + 3x4 .
subject to
Xy +2x +x3=3
2% — X =4

XX, 0320
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The starting solution consists of x5 in the first constraint and an artificial x4 in the second
constraint with M = 100. The optimal tableau is given as

Basic X Xy X3 X, Solution
z 0 2 1] 99 5
Xy 1 2.5 1 -5 1
x, 0 -5 4] .5 2

Write the associated dual problem and determine its optimal solution in two ways.
7. Consider the following set of inequalities:

23 + 3x, = 12
—3x) + 2xy = —4
3xl - sz = 2
X1 unrestricted
Xy =10
A feasible solution can be found by augmenting the trivial objective function Maximize

z = x| + x and then solving the problem. Another way is to solve the dual; from which
a solution for the set of inequalities can be found. Apply the two methods.

8. Estimate a range for the optimal objective value for the following LPs:
*(a) Minimize z = 5x; + 2x;
subject to
X — X = 3
2+ 30 =5

XX =0

(b) Maximize z
subject to

xy + Sxy + 3x5

W+ 2+ x3=3
2.):1_].'2 =4

X), X3, x5 =0

!

{¢) Maximize z = 2x; + x,

subject to
X —x =10
2x1 = 40
X, % =20

(d) Maximize z = 3x; + 2x3
subject to
le + X2 = 3

3y, + dx, < 12

Xy, Xg = 0

4.2
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9. In Problem 7{a}, let y; and y, be the dual variables. Determine whether the following
pairs of primal-dual solutions are optimal:

*a) (=3, n=Ln=4n=1)
B (=4 x=Ly=1»=0)
@ (=3 x2=0y =35,3=0)

Simpiex Tableau Computations

This section shows how any ireration of the entire simplex tableau can be generated
from the original data of the problem, the inverse associated with the iteration, and the
dual problem. Using the layout of the simplex tableau in Figure 4.1, we can divide the
computations into two types:

1. Constraint columns (feft- and right-hand sides).
2. Objective z-row.

Formaula 1: Constraint Colamn Computations. In any simplex iteration, a left-hand or
a right-hand side column is computed as follows:

(Constraim column) B (Inverse in) « ( Original )
in iteration { iteration { constraint column

Formula 2: Objective z-row Computations. [n any simplex iteration, the objective
equation coefficient (reduced cost} of x; is computed as follows:

( Primal z-equation ) B ( Left-hand side of) B (Right-hand side of)
coefficient of variable x, jth dual constraint jth dual constraint

Example 4.2-3

We use the LP in Exampie 4.2-1 to illustrate the application of Formulas 1 and 2. From the opti-
mal tableau in Table 4.4, we have

Optimal inverse =

wAl— LA D
Lalpa Lh =

The use of Formula 1 is iltustrated by computing all the left- and right-hand side columns of
the optimal tableau:

( x)-column in ) _( Inverse in )X( original )
optimal iteration optimal iteration x~column

<(2)- ()

Lhim  Lalkd
wlkd LA
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In a similar manner, we compute the remaining constraint columns; namely,

: 2 _1
( Xy-cotumn in ) 5 75 ( 2) a (I)
optimal iteration \é % -1 0
, [2 1 .|
( xz-column ia ) Y NN A A
. . . - ] 2 -
optimal iteration s s 3

( Xg-column in )_
optimal iteration

( R-column in )_
optimal iteration

Right-hand side
. X2
column in = ( ) =

) . . x
optimal iteration !

L= Lnlbkd
o S,

-

[yaT™
|

Al LAlRS
|
LAlnd LA
X
e T P
[ I ]
S — S
W

Aikd LA

S,

A p—

Lalem Laind
(
Lt La
X
PN
[
oo D
S
R Wi

Next, we demonstrate how the objective row computations are carried out using Formula 2.
The optimal values of the dual variables, (¥, 3») = (25—9, -—%] were computed in Exampie 4.2-1

using two different methods. These values are used in Formula 2 t0 determine the associated z-
coefficients; namely,

zcofficientof x, = y, + 2y, -5 =% +2x-(-5 =0
z-cofficientof k3 = 2y, — p — 12 =2 X 25—9 - (-—%) ~-12=0
z~cofficientof xa =y + 3y, — 4 = %9 +3 X —% -4 %
z-cofficientof xy = y, — 0 = 35? - = 35?
z-cofficientof R = 3, — (=M) = -} - (-M) =-+M

Notice that Formula 1 and Formula 2 calculations can be applied at any iieration of either
the primal or the duai problems. All we need is the inverse associated with the (primal or dual)
iteration and the original LP data.

PROBLEM SET 4.2D

1. Generate the {irst simplex iteration of Example 4.2-1 {you may use TORA’s Iterations
= M-method for convenience), then use Formulas 1 and 2 to verify all the elements of
the resulting tableau.

2. Consider the foltowing LP model:
Maximize z = 4x; + 1dx,

subject to
2).'] + ?x: + X3 =21

Tx1 + 21, + xy =21

X1y X2, X3, X4 =0

f




i

4.2 Primal-Dual Relationships

Check the optimality and feasibility of each of the following
1

T )

45

I
. . z 0
*(a) Basic variables = (x3, x4), Inverse = ( ; )
7

(b) Basic variables = (x;, x3), Inverse =

(¢) Basic variables = {x,, x), Inverse = (
(d) Basic variables = (xy, x4), Inverse = (

o
\...____/

mm = a|,\, Sl

3. Consider the following LP model:

Maximize z = 3x; + 2x; + 5x3

basic solutions.

30
60
20

lutions:

subject to
X + 2X/2 + X3 + Xa =
3):1 + ZX3 + xj =
Xy + 4x2 + Xy =
X1, X3, X3, Xg, X5, Xg = 0
Check the optimality and feasibility of the following basic so
1 -5 ¢
(a) Basic variables = {xy, x3, x4), Inverse = | g % 0
0 0 1
1 1
4 g B
(b) Basic variahles = {x4, x5, X1), Inverse = % _% _%
L i
-1 3 3
Lo
(c) Basic variables = (x,, x3, Xg), Inverse = [ g % 0
-2 11

*4. Consider the following LP model:

Minimize z = 2x; + x5

subject to
o+ x3 — xy =3
dxy + 3x, - x, =6
Xy + 2x; +x;=3

X1, X9, X3, X X5 = 0
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Compute the entire simplex tableau associated with the following basic solution and
check it for optimality and feasibility.

3 1
s 75 0
Basic variables = (x), x3, x35), Inverse = —2 % 0
T -1 1

5. Consider the following LP model:
Maximize z = Sx; + 12x; + 4x3

subject to
x1+2x2+ x3+x4=10

21']_ x2+3x3 =72

Xy, X3, X3, X4 2 0

(a) Identify the best solution from among the following basic feasible solutions:

. . . 1 -
(i} Basic variables = (xy, x3), Inverse = f
0 3
2 _
(31) Basic variables = (x3, x{), Inverse = f :
5 s
31
(i11) Basic variables = (x;, x5}, Inverse = 1 ;
77

(b) Isthe solution obtained in (a) optimum for the LP model?
6. Consider the following LP model:

Maximize z = 5x; + 2x; + 3x3

subject to
X; + 5xp + 2x3 = by
X - 5X2 - 6X3 = bz

Xy, Xy, X3 = 0

The following optimal tablean corresponds to specific values of b) and b,:

Basic X3 X3 X3 X4 X5 Solution
z 0 a 7 d 4 150
x, 1 b 2 1 0 30
Xs 0 ¢ -8 -1 1 10

Determine the following:

(a) The right-hand-side values, b; and b,.
{b) The optimal duai solution.

{¢) Theelementsa, b, ¢, 4, e
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*7. The following is the optimal tableau for a maximization LP model with three (<) con-
straints and all nonnegative variables. The variables x4, x4, and x5 are the slacks associat-
ed with the three constraints. Determine the associated optimal objective value in two
different ways by using the primal and dual objective functions.

Basic x X Xy EA x5 Solution
z 0 0 0 3 V3 ?
X3 0 0 1 1 -1 2
X, 0 1 0 1 G 6
x 1 0 0 - 1 2

8. Consider the following LP:
Maximize z = 2x; + 4x; + 4x, — 3x,
subject to
xp+ xptox; =4
x; + 4x, +x3=28
Xy, Xo, X3, X3 =0

Use the dual problem to show that the basic solution (xq, x;) is not optirnal.

9. Show that Method 1 in Section 42.3 for determining the optimal dual values is actually
based on the Formula 2 in Section 4.2.4.

ECONOMIC INTERPRETATION GF DUALITY

The linear programming problem can be viewed as a resource allocation model in
which the objective is to maximize revenue subject to the availability of limited re-
sources. Looking at the problem from this standpoint, the associated dual problem of-
fers interesting economic interpretations of the LP resource allocation model.

To formalize the discussion, we consider the following representation of the gen-
eral primal and dual problems:

Primal Dual
Maximize z = D, cx; Mirimize w = > by;
=1 i=l
subject to subject to
za,}xjﬁb,-,£= 1,2,..., m Ea;fy,-ac)-,j= 1,2,..., 4
= i=t
x=0/=12,...,n ywae0i=12_...m

Viewed as a resource allocation model, the primal problem has n economic activities
and m resources. The coefficient ¢; in the primal represents the revenue per unit of ac-
tivity j. Resource i, whose maximum availability is b;, is consumed at the rate a;; units
per unit of activity j.
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Economic Interpretation of Dual Variables

Section 4.2.3 states that for any two primal and dual feasible solutions, the values of the
objective functions, when finite, must satisfy the following inequality:

The strict equality, z = w, holds when both the primal and dual solutions are optimal.

Let us consider the optimal condition z = w first. Given that the primal problem
represents a resource allocation model, we can think of z as representing revenue dol-
lars. Because b; represents the number of units available of resource i, the equation
z = w can be expressed dimensionally as

$ = D (units of resource i) X ($ per unit of resource i}
i

This means that the dual variable, y;, represents the worth per umit of resource i. As
stated in Section 3.6, the standard name dual (or shadow) price of resource i replaces
the name worth per unit in all LP literature and software packages.

Using the same logic, the inequality z < w associated with any two feasible pri-
mal and dual solutions is interpreted as

(Revenue) < (Worth of resources)

'This relationship says that so long as the total revenue from all the activities is less than
the worth of the resources, the corresponding primal and dual solutions are not opti-
mal. Optimality (maximum revenue) is reached only when the resources have been ex-
ploited completely, which can happen only when the input (worth of the resources)
equals the output (revenue dollars). In economic terms, the system is said to be
unstable (nonoptimal) when the input (worth of the resources) exceeds the output
{(revenue). Stability occurs only when the two quantities are equal.

Example 4.3-1
The Reddy Mikks model (Example 2.1-1) and its dval are given as:

Reddy Mikks primal Reddy Mikks dual
Maximize ¢ = 5x; + 4x, Minimize w = 24y, + 6y, + y3 + 2y,
subject to subject to
6x, + 4x, = 24 (resource 1, M1) by, + ya— ¥a =5

X, + 2x; = 6 (resource 2, M2) Ay + 2+ +y, =4

—x, + x; =1 (resource 3, market) YurnYuy, =0

X, = 2 (resource 4, demand)

X,xz0
Optimal solution: Optimal solution:
=3 x=15z=121 w=795y=05yn=y=0w=12]

Briefly, the Reddy Mikks model deals with the production of two types of paint (interior
and exterior) using two raw materials M1 and M2 (resources 1 and 2} and subject to market and
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demand limits represented by the third and fourth censtraints. The model determines the
amounts (in tons/day) of interior and exterior paiats that maximize the daily revenue (expressed
in thousands of dotlars}.

The optimal dual sotution shows that the dual price (worth per unit) of raw material M1 (re-

source 1} is y; = .75 (or $750 per ton}, and that of raw material M2 (resource 2} is y = .5 (or
$500 per ton). These results hold true for specific feasibility ranges as we showed in Section 3.6.
For resources 3 and 4, representing the market and demand limits, the dual prices are both zero,
which indicates that their associated resources are abundant. Hence, their worth per unit is zero.

PROBLEM SET 4.3A

1

%2,

In Example 4.3-1, compute the change in the optimal revenue in each of the foliowing
cases (use TORA output to obtain the feasibility ranges):

(a) The constraint for raw material A{1 (resource 1) is 6x) + 4x, = 22.
(b) The constraint for raw material M2 (resource 2) is x; + 2x; =< 4.5.
(¢) The market condition represented by resource 4 is x, = 10.

NWAC Electronics manufactures four types of simple cables for a defense contractor.
Each cable must go through four sequential operations: splicing, soldering, sleeving, and
inspection. The following table gives the pertinent data of the situation.

Minutes per unit

Cable Splicing Soldering Sleeving Inspection  Unit revenue (§)
SC320 10.5 204 32 5.0 9.40
SC323 93 24.6 235 50 10.80
SC340 11.6 17.7 36 5.0 8.75
SC370 82 26.3 5.5 50 7.80
Daily capacity (minutes) 4800.0 9600.0 4700.0 4500.0

The contractor guarantees a minimum production level of 100 units for each of the four

cables.

{a) Formulate the problem as a [inear programming model, and determine the optimum
production schedule.

(b) Based on the dual prices, do you recommend making increases in the daily capacities
of any of the four operations? Explain.

(¢} Does the minimum production requirements for the four cables represent an advan-
tage or a disadvantage for NWAC Electronics? Provide an explanation based on the
dual prices.

(d) Can the present unit contribution to revenue as specified by the dual price be guar-
anteed if we increase the capacity of soldering by 10%?

BagCo produces leather jackets and handbags. A jacket requires 8 m? of leather, and a
handbag only 2 m% The labor requirements for the two products are 12 and 5 hours, re-
spectively. The current weekly supplies of leather and labor are limited to 1200 m? and
1850 hours. The company sells the jackets and handbags at $350 and $120, respectively.
The objective 15 to determine the production schedule that maximizes the net revenue.
BagCo is considering an expansion of production. What is the maximum purchase price
the company should pay for additional leather? For additional labor?
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4.3.2

Economic Interpretation of Dual Constraints

The dual constraints can be interpreted by using Formula 2 in Section 4.2.4, which
states that at any primal iteration,

-hand si ight-hand si
Objective coefficient of x; (Left and side of) 3 (nght hand side of)

dual constraint j dual constraint j
m
= Eaijyi &
i=1

We use dimensional analysis once again to interpret this equation. The revenue per
unit, ¢, of activity j is in dollars per unit. Hence, for consistency, the quantity Efﬂa,}-y‘-
must also be in dollars per unit. Next, because ¢; represents revenue, the quantity
Zf;laffyf, which appears in the equation with an opposite sign, must represent cost.

Thus we have

$ cost = i“if)’f _ i ( usage .of resource i') » (cost per unit.)
e =1 \per unit of activity j of resource ¢

The conclusion here is that the dual variable y, represents the imputed cost per unit of
resource i, and we can think of the quantity . . a;y; as the imputed cost of all the re-
sources needed to produce one uait of activity j.

In Section 3.6, we referred to the quantity (2?;3‘1?})’5 - cj) as the reduced cost
of activity j. The maximization optimality condition of the simplex method says that
an increase in the level of an unused (nonbasic) activity j can improve revenue only if
its reduced cost is negative. In terms of the preceding interpretation, this condition
states that

resources used by

Imputed cost of
<
one unit of activity j

Revenue per unit)
of activity j

The maximization optimality condition thus says that it is economically advanta-
geous to increase an activity to a positive level if its unit revenue exceeds its unit im-

puted cost.
We will use the TOYCO model of Section 3.6 to demonstrate the computation.

The details of the model are restated here for convenience.

Example 4.3-2

TOYCO assembiles three types of toys: trains, trucks, and cars using three operations. Available
assembly times for the three operations are 430, 460, and 420 minutes per day, respectively, and
the revenues per toy train, truck, and car are $3, $2, and 35, respectively. The asserably times per
train for the three operations are 1, 3, and 1 minutes, respectively. The corresponding times per
truck and per car are (2, 0,4) and (1, 2, 0) minutes (a zero time indicates that the operation is
not used).
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Letting x,, x,, and x; represent the daily number of units assembled of trains, trucks and
cars, the associated LP mode] and its dual are given as:

TOYCO primal TOYCO dual
Maximize z = 3x; + 2 + 5x3 Minimize w = 430y + 460y, + 420y,
subject to subject to
x4 2x; + x5 = 430 (Operation 1) H3In+ m=3
3x + 2x; = 460 (Operation 2) 2y, 4y =2
x) + 4x = 420 (Operation 3) n+ 2k =35
I],II,I‘_:,EO y],yz,y320
Optimal solution: Optimat solution:

xy, =0, x; = 100, x5 = 230, z = $1350 w=1»=21w=0w=3$1350

The optimal primal sclution calls for producing no toy trains, 100 toy trucks, and 230 toy
cars. Suppose that TOYCO is interested in producing toy trains as well. How can this be
achieved? Locking at the problem from the standpoint of the interpretation of the reduced cost
for x,, toy trains will become attractive economically only if the imputed cost of the resources
used to produce one toy train is strictly less than its unit revenue. TOYCO thus can either in-
crease the unit revenue per tnit by raising the unit price, or it can decrease the imputed cost of
the used resources (= y; + 3y + y3). An increase in unit price may not be possible because of
market competition. A decrease in the unit imputed cost is more plausible because it entails
making improvements in the assembly operations. Letting ry, r, and r; represent the propor-
tions by which the unit times of the three operations are reduced, the problem requires deter-
mining ry, ry, and r3 such that the new imputed cost per per toy train is less than its unit
revenue —that is,

W —rmn+30 - R+ 1(1—n)y, <3

For the given optimal values of y; = 1, 3» = 2, and y; = 0, this inequality reduces to (verify!)

."i+6rz>4

Thus, any values of r; and r; between 0 and 1 that satisfy r; + 6ry > 4 should make toy traias
profitable. However, this goal may not be achievable because it requires practically impossible
reductions in the times of operations 1 and 2. For example, even reductions as high as 50% in
these times (that is, r; = r, = .5) fail to satisfy the given condition. Thus, TOYCOQO should not
produce toy trains unless an increase in its unit price is possible.

PROBLEM SET 4.3B

1. In Example 4.3-2, suppose that for toy trains the per-unit time of operation 2 can be re-
duced from 3 minutes to at most 1.25 minutes. By how much must the per-unit time of
operation 1 be reduced to make toy trains just profitable?

*2. In Example 4.3-2, suppose that TOYCO is studying the possibility of introducing a fourth
toy: fire trucks. The assembly does not make use of eperation 1. Its unit assembly times
on operations 2 and 3 are 1 and 3 minutes, respectively. The revenue per unit is $4 Would
you advise TOYCO to introduce the new product?
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*3. JoShop uses lathes and drill presses te produce four types of machine parts, PP1, PF2,
PP3,and PP4.The table below summarizes the pertinent data.

Machining time in minutes per unit of

Machine PPI PP2 PP3 Frq Capacity {minutes)
Lathes 2 5 3 4 5300

Drill presses 3 4 6 4 5300

Unit revenue (3) 3 6 5 4

For the parts that are not produced by the present optimum solution, determine the rate
of deterioration in the optimum revenue per unit increase of each of these products.

4. Consider the optimal solution of JoShop in Problem 3. The company estimates that for
each part that is not produced (per the optimum solution), an across-the-board 20% re-
duction in machining time can be realized through process improvements. Would these
unprovements make these parts profitable? If not, what is the minimum percentage re-
duction needed to realize revenueability?

ADDITIONAL SIMPLEX ALGORITHMS

In the simplex algorithm presented in Chapter 3 the problem starts at a (basic) feasible
solution. Successive iterations continue to be feasible until the optimal is reached at
the last iteration. The algorithm is sometimes referred to as the primal simplex method.

This section presents two additional algorithms: The dual simplex and the
generalized simplex. In the dual simplex, the LP starts at a better than optimal infeasible
(basic) solution. Successive iterations remain infeasible and (better than) optimal until
feasibility is restored at the last jteration. The generalized simplex combines both the
primal and dual simplex methods in one algorithm. It deals with problems that start
both nonoptimal and infeasible. In this algorithm, successive iterations are associated
with basic feasible or infeasible (basic) solutions. At the final iteration, the solution be-
comes optimal and feasible (assuming that one exists).

All three algorithms, the primal, the dual, and the generalized, are used in the
course of post-optimal analysis calculations, as will be shown in Section 4.5.

Dual Simplex Algorithm

The crux of the dual simplex method is to start with a better than optimal and infeasible
basic solution. The optimality and feasibility conditions are designed to preserve the op-
timality of the basic solutions while moving the solution iterations toward feasibility.

Dual feasibility condition. The leaving variable, x,, is the basic variable baving the
most negative value (ties are broken arbitrarily). If all the basic variables are
nonnegative, the algorithm ends.

Dual optimality condition. Given that x, is the leaving variable, let ¢; be the reduced
cost of nonbasic variable x; and «,; the constraint coefficient in the x,-row and x;-column
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of the tableau. The entering variable is the nonbasic variable with d,}- < 0 that corre-
sponds to )
min {|a—f'ﬂ, @, < 0}

Nonbasic x;

(Ties are broken arbitrarily.) If a,; = 0 for all nonbasic x;, the problem has no fea-
sible solution.

To start the LP optimal and infeasible, two requirements must be met:

1. The objective function must satisfy the optimality condition of the regular
simplex method (Chapter 3).

2. All the constraints must be of the type {<).

The second condition requires converting any (=) to (=) simply by multiplying
both sides of the inequality (=) by —1. If the LP includes {=) constraints, the equation
can be replaced by two inequalities. For example,

Hn+tx=1
1s equivalent to
x1+x251,x1+x2"21
or
x1+x=1 —x —x= -1
After converting all the constrainis to { =), the starting solution is infeasible if at least
one of the right-hand sides of the inequalities is strictly negative.

Example 4.4-1
Minimize z = 3x; + 2x; + x4
subject to
I+ x4+ x3=3
=35 +3n+ =6
Xy+ x,t+tx3=3
Xy, Xp, x3 = 0

In the present example, the first two inequalities are multiplied by —1 to convert them to
(=) constraints. The starting tableau is thus given as:

Basic Xy Xy X3 X4 x5 X Solution
z -3 =2 -1 0 0 0 0
X4 -3 -1 -1 1 0 H -3
Xs 3 -3 -1 0 1 0 -6
Xg 1 1 1 0 0 1 3




176

Chapter 2 Duality and Post-Optimal Analysis

The tableau is optimal because all the reduced costs in the z-row are = 0
(€, = =3,5,=-2,85=—-1,¢ = 0,& = 0,¢ = 0). It is also infeasible because at least one of
the basic variables is negative (xy = =3, x5 = —6, xg = 3).

According to the dual feasibility condition, x5 (= —6) is the leaving variable, The next table
shows how the dual optimality condition is used to determine the entering variable.

i=1 i=2 i=3
Nonbasic variable x X3
z-row {;) -3 -1
X5-TOW, @y 3 -1
Ratio, 1}, as; < 0 — 1

The ratios show that x; is the entering variable. Notice that a nonbasic variable x; is a candidate
for entering the basic solution only if its e, is strictly negative, This is the reason x, is excluded in
the table above.

The next tableau is obtained by using the familiar row operatiens, which give

Basic X3 x5 X3 Xy X5 Xg Solution
z -5 0 -4 ¢ -3 0 4
Xq -4 0 - 1 -3 0 -1
x, -1 1 ! 0 -1 0 2
Xg 2 0 : 0 : 1 1
Ratio 2 — — 2 —

The preceding tableau shows that x4 leaves and x; enters, thus yielding the following
tableau, which is both optimal and feasible:

Basic X, Xy Xy x4 Xg Xg Solution
z ~3 0 0 —% "IE 0 %
3 1 3
Xy 6 1] 1 -3 3 4] 0
X ~3 1 0 ! -3 0 3
X -2 o ¢ L g i 0

Notice how the dual simplex works. In all the iterations, optimality is maintained (all re-
duced costs are =0). At the same time, each new iteration moves the solution toward feasibility.
At iteration 3, feasibility is restored for the first time and the process ends with the optimal fea-

sible solution given as x; = 0, x; = %, X, = %, andz = g.

TORA Moment,

TORA provides a tutorial module for the dual simplex method. From the
SOLVEMODIEY menu select Solve = Alpebrdic = Itérdtions = Dual-Simplex.
Remember that you need to convert (=) constraints to inequalities. You do not need
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to convert (=) constraints because TORA will do the conversion internally. If the LP
does not satisfy the initial requirements of the dual simplex, a message wiil appear on
the screen.

As in the regular stmplex method, the tutorial module allows you to select the en-

tering and the leaving variables beforehand. An appropriate feedback then tells you if
your selection is correct.

PROBLEM SET 4.4A%

1. Consider the solution space in Figure 4.3, where it is desired to find the optimum extreme
point that uses the dual simplex method to minimize z = 2x; + x,. The optimal solution
occurs at point F = (0.5, 1.5) on the graph.

(a) Can the dual simplex start at point A?

*(b) If the starting basic (infeasible but better than optitnum) solution is given by point
G, would it be possible for the iterations of the dual simplex method to follow the
path G — E — F7? Explain.

(¢} i the starting basic (infeasible) solution starts at point L, identify a possible path of
the dual simplex method that leads to the optimum feasible point at point F.

2. Generate the dual simplex iterations for the following problems (using TORA for conve-
nience), and trace the path of the algorithm on the graphical solution space.
(a) Minimize z = 2x; + 3x,

FIGURE 4.3
Sotution space for Problem 1, Se14.4a

L)

Xy

You are encouraged to use TORA's tutorial mode where possible to avoid the tedious task of carrying out

the Gauss-Jordan row aperations. In this manner, you tan concentrate on uaderstanding the main ideas of
the method. I
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subject to
2x; + 2x, = 30
Xy +2x; =10
x, % =0

(M) Minimize z = 5x; + 6x,
subject to

x1+x222
4x, +x, = 4
x,xn=z0

{¢) Minimize z = 4x, + 2x;
subject to

Xy +x2=1
3 —x=2
I],).’zZO

(d) Minimize z = 2x7 + 3xy
subject to

le+x223
x1+x2=2

X, X2 =0
3. Dual Simplex with Artificial Constraints. Consider the following problem:

Maximize z = 2x; — X3 + X3
subject to
26+ 3x; -5y =4
—x;+ 9 ~ x3=3
4x) + 6xy T 3x3 =8

Xy, Xo, X3 =0

The starting basic solution consisting of surplus variables x4 and x5 and slack variable x
is infeasible because x; = —4 and x5 = —3. However, the dual simplex is not applicable
directly, because x; and x3 do not satisfy the maximization optimality condition. Show
that by adding the artificial constraint x; + x3 = M (where M is sufficiently large not to
eliminate any feasible points in the original solution space), and then using the new con-
straint as a pivot row, the selection of x as the entering variable (because it has the most
negative objective coefficient) will render an all-optimal objective row. Next, carry out
the regular dual simplex method on the modified problem.
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4. Using the artificial constraint procedure introduced in Problem 3, solve the following
problems by the dual simplex method. In each case, indicate whether the resulting solu-
tion is feasible, infeasible, or unbounded.

(a) Maximize z = 2x;
subject to

—-x; + 212 - ZX3 = 8
—X + X3 + X3 = 4
2x) — xp+4x3=10

X1y Xp, X3 = 0
(b) Maximize z = x; — 3x,

subject to
Xy — X3 =2
X + X2 = 4
2x1 - 2x2 = 3
X1, Xp =10
*(¢) Minimize z = —x; + x3
subject to

X]_4XZ25
X]“S.Xzil
2% = 55, = 1

xp,x=0
(d) Maximize z = 2x3
subject to
X1 +3x,— Tx3=5

—Xx; + X3 - Xy = 1
3X1 + xy - 10I3 =38
Xy, Xz, X3 =0

5. Solve the following LP in three different ways (use TORA for convenience). Which
method appears te be the most efficient computationally?

Minimize z = 6x + 7x; + 3x3 + 5x4
subject to
Sxp + 6x; — 3x3 + 4xy =2 12
Xy — 5x3 - 6x, =10
2+ 50+ x+ =8

X1y Xg, X3, X4 =0
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Generalized Simplex Algorithm

The (primal) simplex algorithm in Chapter 3 starts feasible but nonoptimal. The dual
simplex in Section 4.4.1 starts (better than) optimal but infeasible. What if an LP model
starts both nonoptimal and infeasible? We have seen that the primal simplex accounts
for the infeasibility of the starting solution by using artificial variables. Similarly, the
dual simplex accounts for the nonoptimality by using an artificial constraint (see Prob-
lem 3, Set 4.4a). Although these procedures are designed to enhance automatic compu-
tations, such details may cause one to lose sight of what the simplex algorithm truly
entails-—namely, the optimum solution of an LP is associated with a corner point {or
basic) solution. Based on this observation, you should be able to “tailor” your own sim-
plex algorithm for LP models that start both nonoptimal and infeasible. The following
example illustrates what we call the generalized simplex algorithm.

Example 4.4-2

Consider the LP model of Problem 4(a), Set 4.4a. The model can be put in the following
tableau form in which the starting basic solution {x3, x4, Xs) is both nonoptimal (because x,
has 2 negative reduced cost) and infeasible (because x4 = ~8). (The first equation has been
multiplied by —1 to reveal the infeasibility directly in the Solution column.)

Basic Xy X, X5 X, X5 Xg Solution
z 0 0 -2 0 0 0 0
X, i -2 2 1 0 0 ~8
P -1 1 1 0 1 0 4
Xg 2 -1 4 0 0 1 10

We can solve the problem without the use of any artificial variables or artificial constraints
as follows: Remove infeasibility first by applying a version of the dual simplex feasibility condi-
tion that selects x4 as the leaving variable. To determine the entering variable, all we need is a
nonbasic variable whose constraint coefficient in the x,-row is strictly negative. The selection can
be done without regard to optimality, because it is nonexistent at this point anyway (compare
with the dual optimality condition). In the present example, x; has a negative coefficient in the
x4-row and is selected as the entering variable. The result is the following 1ableau:

Basic X, xy x5 X, Xs Xg Solution
z 0 0 ~2 0 0 0 0
X -3 1 -1 -1 0 0
X5 -3 0 : 1 0
x5 2 0 3 -4 0 L 14

The solution in the preceding tableau is now feasible but nonoptimal, and we can use the
primal simplex to determine the optimal solution. In general, had we not restored feasibility in
the preceding tableau, we would repeat the procedure as necessary until feasibiiity is satisfied or
there is evidence that the problem has no feasible solution (which happens if a basic variable is

4.5
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negative and gll its constraint coefficients are nonnegative). Once feasibility is established, the
next step is to pay attention to optimality by applying the proper optimality condition of the pri-
mal simplex method.

Remarks. The essence of Example 4.4-2 is that the simplex method is not rigid. The literature
abounds with variations of the simplex method (e.g., the primal-dual method, the symmetrical
method, the criss-cross method, and the multiplex method) that give the impression that each
procedure is different, when, in effect, they all seek a corner point solution, with a slant toward
automated computations and, perbaps, computational efficiency.

PROBLEM SET 4.48

1. The LP model of Problem 4(c}, Set 4.4a, has no feasible solution. Show how this condi-
tion is detected Ly the generalized simplex procedure.

2. The LP model of Problem 4(d), Set 4.4a, has no bounded solution. Show how this condi-
tion is detected by the generalized simplex procedure.

POST-OPTIMAL ANALYSIS

In Section 3.6, we dealt with the sensitivity of the optimuimn solution by determining the
ranges for the different parameters that would keep the optimum basic solution un-
changed. In this section, we deal with making changes in the parameters of the model
and finding the new optimum solution. Take, for example, a case in the poultry industry
where an LP model is commounly used to determine the optimal feed mix per broiler
(see Example 2.2-2). The weekly consumption per broiler varies from .26 1b (120
grams) for a one-week-old bird to 2.1 1b (950 grams) for an eight-week-old bird. Addi-
tionally, the cost of the ingredients in the mix may change periodically. These changes
require periodic recalculation of the optimum solution. Post-optimal analysis deter-
mines the new solution in an efficient way. The new computations are rooted in the use
duality and the primal-dual retationships given in Section 4.2.

The following table lists the cases that can arise in post-optimal analysis and the
actions needed to obtain the new solution {assuming one exists):

Condition after parameters change Recommended action

Current solution remains optimal and feasible, No further action is necessary.

Current solution becomes infeasible. Use dual simplex to recover feasibility.

Current solution becomes nonoptimal. Use primal simplex to recover optimality.

Current solution becomes both nonoptimal Use the generalized simplex method to obtain new
and infeasible. solution.

The first three cases are investigated in this section. The fourth case, being a combina-
tion of cases 2 and 3, 1s treated in Problem 6, Set 4.5a. )

The TOYCO model of Example 4.3-2 will be used to explain the different proce-
dures. Recall that the TOYCO mode! deals with the assembly of three types of. toys:
trains, trucks, and cars. Three operations are involved in the assembly. We wish to
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determine the number of units of each toy that will maximize revenue. The model and
its dual are repeated here for convenience.

TOYCO primal TOYCO dual
Maximize z = 3x] + 2x; + 5x;3 Minimize z = 430y, + 400y, + 420y,
subject to subject to
Xy + 2x; +  x3 = 430 (Operation 1) y+3m+ o m=3
3x, + 2x3 = 460 (Operation 2) n + 4y =2
X+ 4xp = 420 (Operation 3) n+ 2y =35
X, %3, 232 0 myanzl
Optimal solution: Optirnal solution:

X = 0, x, = 100, x3 = 230, z = $1350 ym=1y,=23=0w=3$1350

‘The associated optimum tableaun for the primal is given as

Basic X; x; X3 Solution
z 4 0 0
X3 - ]; 4]
Ay % 0 1
Xg 2 0 0

4.5.1 Changes Affecting Feasibility

The feasibility of the current optimum solution may be affected only if (1) the right-
hand side of the constraints is changed, or (2) a new constraint is added to the model.
In both cases, infeasibility occurs when at least one element of the right-hand side of
the optimal tableau becomes negative—that is, one or more of the current basic van-
ables become negative.

Changes in the right-hand side. 'This change requires recomputing the right-hand side
of the tableau using Formula 1 in Section 4.2.4:

(New right-hand side of) _ (Inverse m) y ( New right-hand )
tableau in iteration § iteration { side of constraints

Recall that the right-hand side of the tableau gives the values of the basic varables.

Example 4.5-1

Situation 1. Suppose that TOYCO wants to expand its assembly lines by increasing the daily
capacity of operations 1,2, and 3 by 40% to 602, 644, and 588 minutes, respectively. How would
this change affect the total revenue?
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With these increases, the only change that will take place in the optimum tableau is the
right-hand side of the constraints (and the optiraum objective value). Thus, the new basic solu-
tion is computed as follows:

Xy > -1 0\/em 140
x3(=] 0 1 0| l64a]|=]32
xg -2 1 1/\588 28

Thus, the current basic variables, X;, X3, and Xxg, remain feastble at the new values 140, 322,
and 28, respectively. The associated optinum revenue is $1890, which is $540 more than the cur-
rent revenue of $1350.

Siteation 2. Although the new solution is appealing from the standpoint of increased revenue,
TOYCO recognizes that its implementation may take time. Another proposal was thus made to
shift the slack capacity of operation 3 (xg = 20 minutes) to the capacity of operation 1. How
would this change impact the optimum solution?

The capacity mix of the three aperations changes to 450, 460, and 400 minutes, respectively.
The resulting sotution is

x 5 —5 0\/450 110
x;]=|0 % o]l4601=]230
X6 -2 1 17\400 —40

The resulting solution is infeasible because xg = —40, which requires applying the duai
simplex method to recover feasibility. First, we modify the right-hand side of the tableau as
shown by the shaded column. Notice that the associated value of z = 3 X 0 + 2 X 110 + 5 X
230 = $1370.

Basic X X X3 Xq X5 Xs Solution
z 4 0 0 1 2 0
X -1 1 0 ;3 -+ 0
X3 2 0 1 0 : 0
g 2 0 0 -2 1 1

From the dual simplex, xg leaves and x4 enters, which yields the following optimal feasible
tableauv (in general, the dual simplex may take more than one iteration to recover feasibility).

Basic X X3 X3 X4 Xs Xg Solution
5 1
Z 5 0 0 Q 3 7 1350
X 1 o0 o 0 ! 100
x3 ;0 1 0 : 0 230
X, -t 0 0 1 -1 4 20

The optimum solution (in terms of Xy, X3, and X3) remains the same as in the original
model. This means that the proposed shift in capacity allocation is not advantageous in- this
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case because all it does is shift the surplus capacity in operation 3 to & surpius capacity in op-
eration 1. The conclusion is that operation 2 is the bottleneck and it may be advantageous to
shift the surplus to operation 2 instead (see Froblem 1, Set 4.5a). The selection of operation 2
over operation 1 i5 also reinforced by the fact that the dual price for operation 2 ($2/min} is
higher than that for operation 2 (= $1/min).

PROBLEM SET 4.5A

L. In the TOYCO model listed at the start of Section 4.5, would it be more advantageous to

2.

*4,

assign the 20-minute excess capacity of operation 3 to operation 2 instead of operation 1?

Suppose that TOYCO wants to change the capacities of the three operations according to
the following cases:

460 500 300 450
(a) [ 500 (b)y | 400 (c) | 800 (d) | 700
400 600 200 350

Use post-optimal analysis to determine the optimum solution in each case.

Consider the Reddy Mikks model of Example 2.1-1. Its optimal tableau is given in Exam-
ple 3.3-1. If the daily availabilities of raw materials M1 and M2 are increased to 28 and §
tons, respectively, use post-optimal analysis to determine the new optimal solution.

The Ozark Farm has 20,000 broilers that are fed for 8 weeks before being marketed. The
weekly feed per broiler varies according to the following schedule:

Week 1 2 3 4 5 [ 7 8

Ib/broiler 26 A48 75 1.00 130 1.60 1.90 2.10

For the broiler to reach a desired weight gain in 8 weeks, the feedstuffs must satisfy spe-
cific nutritional needs. Although a typical list of feedstuffs is large, for sirnplicity we will
limit the model to three items only: limestone, corn, and soybean meal. The nutritional

needs will aiso be limited to three types: calcium, protein, and fiber. The following table
summarizes the nutritive content of the selected ingredients together with the cost data.

Content (Ib) per b of

Ingredient Calcium Protein Fiber  $perib
Limestone 380 .00 00 a2
Corn o .09 02 45
Soybean meal 002 .50 .08 1.60

The feed mix must contain
(a) At least 8% but not more than 1.2% calcium
(b) Atleast 22% protein

{c) Atmost 5% crude fiber
Solve the LP for week 1 and then use post-optimal analysis to develop an optimal

. schedule for the remaining 7 weeks.
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5. Show that the 100% feasibility rule in Problem 12, Set 3.6c {Chapter 3) is based on the
condition
(Optimum)(Original right-hand) =0
inverse side vector -

6. Post-optimal Analysis for Cases Affecting Both Optimality and Feasibility. Suppose
that you are given the following simultaneous changes in the Reddy Mikks model:
The revenue per ton of exterior and interior paints are $1000 and $4000, respectively,
and the maximum daily availabilities of raw materials, M1 and M2, are 28 and 8 tons,
respectively. ‘

(a) Show that the proposed changes will render the current optimal solution both
nonoptimal and infeasible.

(b) Use the generalized simplex algorithm (Section 4.4.2) to determine the new optimal
feasible solution.

Addition of New Constraints. The addition of a new constraint to an existing model
can lead to one of two cases.

1. The new constraint is redundant, meaning that it is satisfied by the current opti-
mum solution, and hence can be dropped from the model altogether.

2. The current solution violates the new constraint, in which case the dual simplex
method is used to restore feasibility.

Notice that the addition of a new constraint can never improve the current opti-
mum objective value.

Example 4.5-3

Situation 1. Suppose that TOYCO is changing the design of its toys, and that the change will re-
quire the addition of a fourth operation in the assembly lines. The daily capacity of the new op-
eration is 500 minutes and the times per unit for the three products on this operation are 3,1, and
1 minutes, respectively. Study the effect of the new operation on the optimum solution.

The constraint for operation 4 is
3xy + xp + x5 = 500

This constraint is redundant because it is satisfied by the current optimum solution x; = 0,
x; = 100, and x, = 230. Hence, the current optimum solution remains unchanged.

Situation 2. Suppose, instead, that TOYCO unit times on the fourth operation are changed to
3,3, and 1 minutes, respectively. All the remaining data of the model remain the same. Will the
optimum solution change?

The constraint for operation 4 is

3):1 + 3x2 '|‘X3's 500
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This constraint is not satisfied by the current optimum solution. Thus, the new constraint must be
added to the current optimum tableau as follows (x; is a slack):

Basic X X3 X X4 X5 xg Solution
z 4 0 0 1 2 0 1350
X ~% 0 ;- 0
X3 % 1 0 0

2 ] 1

The tableau shows that x; = 500, which is not consistent with the values of X, and x4 in the
rest of the tableau. The reason is that the tasic variables x; and x5 have not been substituted out
in the new constraint. This substitution is achieved by performing the following operation:

New xz-row = Old xprow — {3 X {xp-row) + 1 X {x5row}}
This operation is exactly the same as substituting
L 1 1
Xy = 100 — ("in + 5X4 - ExS)

x3 =230 = (31 + 1xs)

m the new constraint. The new tableau is thus given as

Basic X X3 X3 X4 X3 Xg x; Solution
2 4 0 0 1 2 0 0 1350
Xy -1 o0 It 0 o 100
x3 2 0 1 0 10 0 230
x5 2 0 0 -2 11 0 20
% 0o o -2 oo 1 -30

Application of the dual simplex method will produce the new optimum solution x; = 0,
X, = 90, x5 = 230, and z = $1330 (verify!). The solution shows that the addition of opera-~
tion 4 will worsen the revenues from $1350 to $1330.

PROBLEM SET 4.5B

1. In the TOYCO model, suppose the fourth operation has the following specifications: The
maximum production rate based on 480 minutes a day is either 120 units of product 1,
480 units of product 2, or 240 units of product 3. Determine the optimal solution, assum-
ing that the daily capacity ts limited to

*(a) 370 minutes.
(b) 548 minutes.

2. Secondary Constraints. Instead of solving a problem using all of its constraints, we can

start by identifying the so-called secondary constraints. These are the constraints that we

4.
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suspect are least restrictive in terms of the optimum solution. The model is solved using
the remaining (primary) constraints. We ruay then add the secondary constraints one at a
time. A secondary constraint is discarded if it satisfies the available optimum. The process
is repeated until all the secondary constraints are accounted for.

Apply the proposed pracedure to the fallowing LP:

Maximize z = 5x; + 6xy + 3x,
subject to

S5x| 4+ 5xy + 3x3 = 50

X+ x—- x3=20

Tx; + 6x; — 9x3 = 30

S5xp + Sxp + 3x, = 35

12x, + 6x, = 90

X — 9%, =20

xla st 'rg 2 0

Changes Affecting Optimality

This section considers two particular situations that could affect the optimality of the
current solution:

1. Changes in the original objective coefficients.
2. Addition of a new economic activity {variable) to the model.

Changes in the Objective Function Coefficients. These changes affect only the optimality
of the solution. Such changes thus require recomputing the z-row coefficients (reduced
costs) according to the following procedure:

1. Compute the dual values using Method 2 in Section 4.2.3.

2. Use the new dual values in Formula 2, Section 4.2.4, to determine the new re-
duced costs (z-row coefficients).

Two cases will result:

1. New z-row satisfies the optimality condition. The solution remains unchanged
(the optimum objective value may change, however).

2. The optimality condition is not satisfied. Apply the (primal) simplex method to
recover optimality.

Example 4.5-4

Situation 1. In the TOYCO model, suppose that the company has a new pricing policy to meet
the competition. The unit revenues under the new policy are $2, §3, and $4 for train, truck, and
car toys, respectively. How is the optimal solution affected? T

et e e i T e
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The new objective function is

Maximize z = 2x;, + 3x; + 4x;
Thus,

(New objective coefficients of basic x,, x3, and xg) = (3,4,0)
Using Method 2, Section 4.2.3, the dual variables are computed as

1
2
(yuy33) = (3,40)] 0

The z-row coefficients are determined as the difference between the left- and right-hand
sides of the dual constraints {(Formula 2, Section 4.2.4). It is not necessary to recompute the ob-
jective-row coefficients of the basic variables x5, X3, and X¢ because they always equal zero re-
gardless of any changes made in the objective coefficients (verify!).

Reducedcostofx; = y; + 3y + »3 — 2=%+3(§] +0-2= l}

Reduced costofx; =y, — 0 =

E-N [V S [T

Reduced costof xs = » — 0 =

Note that the right-hand side of the first dual constraint is 2, the new coefficient in the modified
objective function.

The computations show -that the current solution, x; = 0 train, x, = 100 trucks, and
x3 = 230 cars, remains optimal. The corresponding new revenue is computed as2 X 0 + 3 X
100 + 4 X 230 = $1220. The new pricing policy is not advantageous because it leads to lower
revenue.

Situation 2. Suppose now that the TOYCO objective function is changed to
Maximize z = 6x, + 3x; + 4x;
Will the optimum solution change?

We have

|

o bl S Ll L)

1

2

(yh ¥, .”3) = (3» 4, 0) 0
-2

Reducedcostof x; = y + 3y + » —
Reduced costofxy = y;, — 0 =

Reducedcostof x5 = yp — 0 =

A A B

The new reduced cost of x, shows that the current solution is not opfimum.




4.5 Post-Optimal Analysis 189

To determine the new solution, the z-row is changed as highlighted in the follow-
ing tableau:

Basic x) X X3 X4 X5 Xg Solution
EIRIE

T g ©

X2 _% ].
¢ 0

X3 3

Xg 2 0

The elements shown in the shaded cells are the new reduced cost for the nonbasic
variables x;, x4, and xs. All the remaining elements are the same as in the original op-
timal tableau. The new optimum solution is then determined by letting x; enter and x;
leave, which yields x; = 10, x, = 102.5, x3 = 215, and z = $1227.50 (verify!). Al-
though the new solution recommends the production of all three toys, the optimum
revenue is less than when two toys only are manufactured.

PROBLEM SET 4.5C

1. Investigate the optimality of the TOYCO solution for each of the following objective
functions. If the solution changes, use post-optimal analysis to determine the new opti-
mum. (The optimum tableau of TOYCO is given at the start of Section 4.5.)

(@) z=2x, + xp + 43
(b) z =3x; +6x; + x5
() z=28x + 3x, + 9x;

2. Investigate the optimality of the Reddy Mikks solution (Example 4.3-1}) for each of the
following objective functions. If the solution changes, use post-optimal analysis to deter-
mine the new optimum. (The optimal tableau of the model is given in Example 3.3-1.)

*a) z =3x + 2x,
() z =8x, + 10x,
*e) z=2xy + 5x,

3. Show that the 100% optimality rule (Problem 8, Set 3.6d, Chapter 3) is derived from
(reduced costs} = 0 for maximizatioa problems and (reduced costs) = 0 for minimiza-
tion problems.

Addition of a New Activity. The addition of a new activity in an LP model is equivalent
to adding a new variable. Intuitively, the addition of a new activity is desirable only if it
is profitable —that is, if it improves the optimal value of the objective function. This
condition can be checked by computing the reduced cost of the new variable using
Formula 2, Section 4.2.4. If the new activity satisfies the optimality condition, then the
activity is not profitable. Else, it is advantageous to undertake the new activity.

Example 4.5-5

TQYCO recognizes that toy trains are not currently in production because they are not profitatle.
The company wants to replace toy trains with a new product, a toy fire engine, to be assembled on
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the existing facilities. TOYCO estimates the revenue per toy fire engine to be $4 and the assembiy
times per unit to be 1 minute on each of operations 1 and 2, and 2 minutes on operation 3. How
would this change impact the solution?

Let x; represent the new fire engine product. Given that (y, y», y3) = (1,2, 0) are the
optimal dual values, we get

Reducedcostof x; = 1yy + 1y, + 23 —4=1X 1 +1X2+2X0—-4=~1

The result shows that it is profitable to include Xx; in the optimal basic solution. To obtain the
new optimum, we first compute its column constraint using Formula 1, Section 4.2.4, as

i 1 1
SIS
xs-constraint colum = 0 ; Ol =43
-2 1 1/\2 i
Thus, the current simplex tableau must be modified as follows
Basic Xy Xy Xy X5 Xg Solution
z 4 Q 1 2 0 1350
X —% % —41 0 100
x3 P 0 0 oo 230
Xg 2 0 -2 1 1 20

The new optimum is determined by letting X~ enter the basic solution, in which case xg must
leave. The new solution is x; = 0, x; = 0, x3 = 125, x; = 210, and z = §1465 (verify!),
which improves the revenues by $115.

PROBLEM SET 4.5D

*1. In the original TOYCQ model, toy trains are not part of the optimal product mix. The
company recognizes that market competition will not allow raising the urit price of the
toy. Instead, the company wants to concentrate on improving the assembly operation it-
self. This entails reducing the assembly time per unit in each of the three operations by a
specified percentage, p%. Determine the value of p that will make toy trains just prof-
itable. (The optimum tableau of the TOYCO model is given at the start of Section 4.5.)

2. In the TOYCQO model, suppose that the company can reduce the unit tirnes on operations
1,2, and 3 for toy trains from the current levels of 1,3, and 1 minutes to .5, 1, and .5 min-
utes, respectively. The revenue per unit remains unchanged at $3. Determine the new op- ;
timum solution. ]

3. Inthe TOYCO model, suppose that a new toy (fire engine) requires 3, 2, 4 minutes, re-
spectively, on operations 1,2, and 3. Determine the optimal solution when the revenue
per unit is given by

*(a) $5.
(b) $10.
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4. In the Reddy Mikks model, the company is considering the production of a cheaper
brand of exterior paint whose input requirements per ton include .75 ton of each of raw
materials M1 and M2. Market conditions still dictate that the excess of interior paint over
the production of both types of exterior paint be limited to 1 ton daily. The revenue per
ton of the new exterior paint is $3500. Determine the new optimal solution. (The model is
explained in Example 4.5-1, and its optimum tableau is given in Example 3.3-1.)
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CHAPTER 5

Transportation Model
and Its Variants

Chapter Guide. The transportation model is a special class of inear programs that
deals with shipping a commodity from sources {e.g., factories) to destinations (e.g.,
warchouses). The objective is to determine the shipping schedule that minimizes the
total shipping cost while satisfying supply and demand limits. The application of the
transportation model can be extended to other areas of operation, including inventory
control, employment scheduling, and personnel assignment.

As you study the material in this chapter, keep in mind that the steps of the trans-
portation algorithm are precisely those of the simplex method. Another point is that
the transportation algorithm was developed in the early days of OR to enhance hand
computations. Now, with the tremendous power of the computer, such shortcuts may
not be warranted and, indeed, are never used in commercial codes in the strict manner
presented in this chapter. Nevertheless, the presentation shows that the special trans-
portation tableau is useful in modeling a class of problems in a concise manner (as op-
posed Lo the familiar LP model with explicit objective function and constrainis). [n
particular, the transportation tableau format simplifies the solution of the problem by
Excel Solver. The representation also provides interesting ideas about how the basic
theory of linear programming is exploited to produce shortcuts in computations.

You will find TORA’s tutorial module helpful in understanding the details of the
transportation algorithm. The module allows you to make the decisions regarding the
logic of the computations with immediate feedback.

This chapter includes a summary of 1 real-life application, 12 solved examples, 1
Solver model, 4 AMPL models, 46 end-of-section problems, and 5 cases. The cases are in
Appendix E on the CD.The AMPL/Excel/Solver/TORA programs are in folder ch5Files.

Real-life Application—5cheduling Appointments at Australian Trade Events

The Australian Tourist Commission (ATC) orgaaizes trade events around the world to
provide a forum for Australian sellers to meet international buyers of tourism prod-
ucts, including accommeodation, tours, and transport. During these events, sellers are

193
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Sources Destinations

Units of
2 demand

FIGURE 5.1
Representation of the transportation mode! with nodes and arcs

stationed in booths and are visited by buyers according to scheduled appointments. Be-
cause of the limited number of time slots available in each event and the fact that the
number of buyers and seilers can be quite large (one such event held in Melbouine in
1997 attracted 620 sellers and 700 buyers), ATC attempts to schedule the seller-buyer
appointments in advance of the event in a manner that maximizes preferences. The
model has resulted in greater satisfaction for both the buyers and sellers. Case 3 in
Chapter 24 on the CD provides the details of the study.

5.1 DEFINITION OF THE TRANSPORTATION MODEL

The general problem is represented by the network in Figure 5.1. There are m
sources and n destinations, each represented by a node. The arcs represent the
routes linking the sources and the destinations. Arc (i, j) joining source i to destina-
tion j catries two pieces of information: the transportation cost per unit, ¢;;, and the
amount shipped, x;. The amount of supply at source { is g; and the amount of de-
mand at destination j is b;. The objective of the model is to determine the unknowns
x;; that will minimize the total transportation cost while satisfying all the supply and
demand restrictions.

Example 5.1-1

MG Auto has three plants in Los Angeles, Detroit, and New Orleans, and two major distribution
centers in Denver and Miami. The capacities of the three plants during the next quarter are 1000,
1500, and 1200 cars. The quarterly demands at the two distribution centers are 2300 and 1400
cars. The mileage chart between the plants and the distribution centers is given in Table 5.1.

The trucking company in charge of transporting the cars charges 8 cents per mile per car.
The transportation costs per car on the different routes, rounded to the closest dollar, are given
in Table 5.2.

The LP model of the problem is given as

Minimize 7 = 80x;; + 215x;, + 100x3; + 108xy; + 102x3; + 68x3,
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TABLES.1 Mileage Chart
Denver Miami
Los Angeles 1000 2690
Detroit 1250 1350
New Qrleans 1275 850

TABLE 5.2 Transportation Cost per Car

Denver (1) diami (2)

Los Angeles (1) 380 $215

Detroit (2) $100 $108

New Orleans (3) $102 $68

subject to
X+ xp = 1000 (Los Angeles)
X, + X = 1500 (Detroit)
+ x3; + x33 = 1200 (New Oreleans)
X1 + Xy + X3 = 2300 (Deaver)
X, + X33 + x3; = 1400 (Miami)
x;20,i=1,23j=12

These constraints are all equations because the total supply from the three sources (= 1000 +
1500 + 1200 = 3700 cars) equals the total demand at the two destinations (= 2300 + 1400 =

3700 cars}.

The LP model can be solved by the simplex method. However, with the special structure of
the constraints we can soive the problem more conveniently using the transportation tableau

shown in Table 3.3.

TABLE 5.3 MG Transportation Model

Denver Miami
Los Angeles 80 215
faatl X2
Detroit 100 108
L21 Xz
New Orleans 102 68
X3 L3
Demand 2300 1400

Supply
1000

1500

R



196 Chapter5 Transportation Model and Its Variants

1006
Los Angeles
1500
Detroit
FIGURE 5.2 1200
Optimal solution of MG Auto model New Orleans

The optimal solution in Figure 5.2 (obtained by TORA!) calls for shipping 1000 cars from
Los Angeles to Denver, 1300 from Detroit to Denver, 200 from Detroit to Miami, and 1200 from
New Orleans to Miami. The associated minimum t{ransportation cost is computed as 1000 X $80 +
1300 X 3100 + 200 x $108 + 1200 X $68 = $313,200.

Balancing the Transportation Model. The transportation algorithm is based on the
assumption that the model is balanced, meaning that the total demand equals the total
supply. If the model is unbalanced, we can always add a dummy source or a dummy
destination to restore balance.

Example 5.1-2

In the MG model, suppose that the Detroit piant capacity is 1300 cars (instead of 1500). The total
supply (= 3500 cars) is less than the total demand (= 3700 cars), meaning that part of the de-
mand at Denver and Miami will not be satisfied.

Because the demand exceeds the supply, a dummy source (plant) with a capacity of 200 cars
{= 3700 — 3500) is added to balance the transportation model. The unit transportation costs
from the dummy plant to the two destinations are zero because the plant does not exist.

Table 5.4 gives the balanced model together with its aptimum solution. The solution shows
that the dummy plant ships 200 cars to Miami, whick means that Miami will be 200 cars short of
salisfying its demand of 1400 cars.

We can make sure that a specific destination does not experience shortage by assigning a
very high unit transportation cost from the dummy source to that destination. For example, a
penalty of $1000 in the dummy-Miami cell will prevent shortage at Miami. Of course, we cannot
use this “trick” with all the destinations, because shortage must occur somewhere in the system.

The case where the supply exceeds the demand can be demonstrated by assurning that the
demand at Degpver is 1900 cars only. In this case, we need to add a dummy distribution center to
“receive” the surplus supply. Again, the unit transportation costs to the dumnmy distribution cen-
ter are zero, unless we require a factory to “ship out” compietely. In this case, we must assign a
high unit transportation cost from the designated factory to the dummy destination.

"To use TORA, from Main Mepu’ select :Fransportation Model . From the SOLVE/MODIFY. men, select
Solve: = Fiiial’schitioh’ to obtain a summary of the optimum solution. A detaited description of the itera-
tive sotution of the transportation model is given in Section 5.3.3.
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TABLE 5.4 MG Model with Dummy Plant

Denver Miami Supply

80 215
Los Angeles
1000 1000
100 108
Detroit
1300 1300
102 68
New Orleans
1200 1200
Dummy Plant
200

Demand 2300 1400

TABLE 5.5 MG Model with Dummy Destination

Denver Miami Dummy
80 215
Los Angeles
1000 1000
100 108
Detroit
900 200 1500
102 68
New QOricans
1200 VLI 1200
Demand 1900 1400 400

Table 5.5 gives the new model and its optimal solution (obtained by TORA). The solution
shows that the Detroit plant will have a surplus of 400 cars.

3 PROBLEM SET 5.1A%

1. True or False?

(a) To balance a transportation model, it may be necessary to add both a dummy source
and a dummy destination.

{(b) The amounts shipped to a dummy destination represent surplus at the shipping
source.

{c) The amounts shipped from a dummy source represent shortages at the recetving
destinations.

’In this set, you may use TORA to find the optimum solution. AMPL and Solver models for the transporta-
tion problem will be introduced at the end of Section 3.3.2.
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2.

3.

*4,

*6.

In each of the following cases, determine whether a dummy source or a dummy destina-
tion must be added 10 balance the model.
(a) Supply:ay = 10,2, =5, a3 =4,a,= 6

Demand: b, = 10,5, = 5,6 =7, b, =9
(b) Supply g, = 30,a;, = 44

Demand: bl = 25,b2 = 30. b3 =10
In Table 54 of Example 5.1-2, where a dummy plant is added, what does the solution
mean when the dummy plant “ships™ 150 cars to Denver and 50 cars to Miami?

In Table 5.5 of Example 5.1-2, where a dummy destination is added, suppose that the De-
troit plant must ship out i/ its production. How can this restriction be implemented in
the model?

In Example 5.1-2, suppose that for the case where the demand exceeds the supply
(Tabie 5.4), a penalty is levied at the rate of $200 and $300 for each undelivered car at
Denver and Miami, respectively. Additionally, no deliveries are made from the Los
Angeles plant to the Miami distribution center. Set up the model, and determine the
optimal shipping schedule for the problem.

Three electric power plants with capacities of 25, 40, and 30 million kWh supply electrici-
ty to three cities. The maximum demands at the three cities are estimated at 30, 35, and 25
million kWh. The price per million kWh at the three cities is given in Table 5.6.

During the month of August, there is a 20% increase in demand at each of the three
cities, which can be met by purchasing electricity from another network at a premium
rate of $1000 per million kWh. The network is not linked to city 3, however. The utility
company wishes to determine the most economical plan for the distribution and pur-
chase of additional energy.

(a) Formulate the problem as a transportation model.

(b) Determine an optimal distribution plan for the utility company.

(¢} Determine the cost of the additional power purchased by each of the three cities.
Solve Problem 6, assuming that there is a 10% power transmission loss through the net-
work.

Three refineries with daily capacities of 6, 5, and 8 million gallons, respectively, supply
three distribution areas with daily demands of 4, 8, and 7 million galions, respectively.
Gasoline is transported to the three distribution areas through a network of pipelines
The transportation cost is 10 cents per 1000 gallons per pipeline mile. Table 5.7 gives the
mileage between the refineries and the distribution areas. Refinery 1 is not connected o
distribution area 3.

(a) Construct the asscciated transportation model.

(b) Determine the optimum shipping schedule in the network.

TABLE 5.6 Price/Million k'Wh for Problem 6

City
| 2 3

1 $600 $700 $400
Plant 2 $320 $300 $350
3 $560 $480 $450




5.1 Definition of the Transportation Model 199

TABLE 5.7 Mileage Chart for Problem 8§

Distribution area
1 2 3

i 120 180 —
Refinery 2 300 100 80
3 200 250 120

*9, In Problem 8, suppose that the capacity of refinery 3 is 6 million gallons only and that
distribution area 1 must receive all its demand. Additionally, any shortages at areas 2 and
3 will incur a penalty of 5 cents per gallon.

{a) Formulate the problem as a transportation model.
(b) Determine the optimurm shipping schedule.

10. In Problem 8, suppose that the daily demand at area 3 drops to 4 million gaflons. Surplus
production at refineries 1 and 2 15 diverted to other distribution areas by truck. The trans-
portation cost per 100 gallons is $1.50 from refinery 1 and $2.20 from refinery 2. Refinery
3 can divert its surplus production to other chemical processes within the plant.

(a) Pormulate the problem as a transportation model.
{b) Determine the optimum shipping schedule.

11. Three orchards supply crates of oranges to four retailers. The daily demand amounts at
the four retailers are 150, 150, 400, and 100 crates, respectively. Supplies at the three or-
chards are diciated by available regular labor and are estimated at 130, 200, and 250
crates daily. However, both orchards 1 and 2 have indicated that they could supply more
crates, if necessary, by using overtime [abor. Orchard 3 does not offer this option. The
transportation costs per crate from the orchards to the retailers are given in Table 5.8.
(a) Formulate the problem as a transportation model.

(b) Solve the problem.
(c¢) How many crates should orchards 1 and 2 supply using overtime labor?

12. Cars are shipped from three distribution centers to five dealers. The shipping cost is
based on the mileage between the sources and the destinations, and is independent of
whether the truck makes the trip with partial or full loads. Table 5.9 summarizes the

! mileage between the distribution centers and the dealers together with the monthly sup-

] ply and demand figures given in number of cars. A full truckload includes 18 cars. The

transportation cost per truck mile is $25.

(a) Formulate the associated transportation model.
(b) Determine the optimal shipping schedule.

TABLE 5.8 Transportation Cost/Crate for Problem 11

Retailer
1 2 3 4

1 %1 $2 33 $2
Orchard 2 $2 34 §1 $2
3 $1 $3 $5 $3
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TABLE 5.9 Mileage Chart and Supply and Dermand for Problem 12

Dealer
1 2 3 4 5 Supply

1 100 156 200 140 35 400
Center 2 30 T0 80 65 80 200
3 40 g0 100 150 130 150

Demand 100 200 150 166 140

13. MG Auto, of Exaruple 5.1-1, produces four car models: M1, M2, M3, and M4. The Detroit .
plant produces models M1, M2, and M4. Models M1 and M2 are also produced in New
Orleans. The Los Angeles plant mtanufactures models M3 and M4, The capactiies of the
various plants and the demands at the distribution centers are given in Table 5.10.

The mileage chart is the same as given in Example 5.1-1, and the transportation rate
remains at 8 cents per car mile for all models. Additionally, it is possible to satisfy a per-
centage of the demand for some models from the supply of others according to the speci-
ficattons in Table 5.11.

(a) Formulate the corresponding transportation model.

(b) Determine the optimum shipping schedule.

(Hint: Add four new destinations corresponding to the new combinations [M1, M2], (M3,
M4), [M1, M2], and [M2, M4]. The demands at the new destinations are determined from
the given percentages.)

TABLE 5.10 Capacities and Derands for Problem 13

Model

M1 M2 M3 M4 Totals

Plant
Los Angeles — — 700 300 1000
Detroit 500 600 — 400 1500
New Orleans 800 A0 — -— 1200
1stributi nter
Denver 700 500 500 600 2300
Miami 600 500 200 100 14}

TABLE 5.1 Interchangeable Models in Problem 13

Distribution center ~ Percentage of demand  Interchangeable models

Denver 10 M1, M2
20 M3, M4
Miami 10 M1, M2

5 M2, M4

5.2
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NONTRADITIONAL TRANSPORTATION MODELS

The application of the transportation model is not imited to transporting commodities
between geographical sources and destinations. This section presents two applications
in the areas of production-inventory control and tool sharpening service.

Example 5.2-1 (Production-Inventory Control)

Boralis manufactures backpacks for serious hikers. The demand for its product occurs during
March to June of each year. Boralis estimates the demand for the four months to be 100, 200,
180, and 300 units, respectively. The company uses part-time labor to manufacture the backpacks
and, accordingly, its production capacity varies monthly. It is estimated that Boratis can produce
50,180, 280, and 270 units in March through June. Because the production capacity and demand
for the different months do not match, a current month’s demand may be satisfied in one of
three ways.

1. Current month’s production.
2. Surplus production in an earlier month.
3. Surplus production in a later month (backordering).

In the first case, the production cost per backpack is $40. The second case incurs an addi-
tional holding cost of $.50 per backpack per month. In the third case, an additional penalty cost
of $2.00 per backpack is incurred for each month delay. Boralis wishes to determine the optimat
production schedule for the four months,

The situation can be modeled as a transportation modet by recognizing the following paral-
lels between the elements of the production-inventory problem and the transportation model:

Transportation Production-inventory

1. Source § 1. Production period {

2. Destination j 2. Demand period §

3. Supply amount at source { 3. Production capacity of peried i

4, Demand at destination j 4. Demand for period §

5. Unit transportation cost from source i 5. Unit cost {production + inventory + penalty}in period {
to destination j for period §

The resuiting transportation model is given in Table 5.12.

TABLE 5.12 Transportation Model for Example 5.2-1

1 2 3 4 Capacity
1 $40.00 $40.50 $41.00 $41.50 50
2 $42.00 $40.00 $40.50 341.00 180
3 $44.00 $42.00 $40.00 $40.50 280
4 $46.00 $44.00 $42.00 $40.00 270
Demand 108 200 180 340 -
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Supply 50 180 280 270
Supply period o
/ s
’ s
50| so,7 130 70,7 180) 30~ 270
s / ™
/ 7 .
Demand period o
Demand 140 200 180 300

FIGURE 5.3
Optimal solution of the production-inventory model

The unit “transportation” cost from period i to period j is computed as

Production costini, i = j
¢y = ¢ Production costin i + holding cost fromitof,i < J
Production cost in i + penaty cost from ito j, i > §

For example,
) = $40.00
¢3¢ = $40.00 + ($.50 + $.50) = $41.00
cq = $40.00 + ($2.00 + $2.00 + $2.00} = $46.00
The optimal solution is summarized in Figure 5.3. The dashed lines indicate back-ordering,

the dotted lines indicate production for a future period, and the solid lines show production in a
period for itself. The total cost is $31,455.

Example 5.2-2 (Tool Sharpening}

Arkansas Pacific operates a medium-sized saw mill. The mill prepares different types of wood
that range from soft pine to hard cak according to a weekly schedule. Depending on the type of
wood being mulled, the demand for sharp blades varies from day to day according to the follow-

ing 1-week (7-day) data:

Day Mon. Tue. Wed. Thu Fri. Sat. Sun.

Demand (blades) 24 12 14 20 18 14 22

A

L
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The mill can satisfy the daily demand in the following manner:

1. Buy new blades at the cost of $12 a blade.
2. Use an overnight sharpening service at the cost of $6 a blade.
3. Use aslow 2-day sharpening service at the cost of §3 a blade.

203

The situation can be represented as a transportation model with eight sources and seven
destinations. The destinations represent the 7 days of the week. The sources of the model are
defined as follows: Source 1 corresponds to buying new blades, which, in the extreme case, can
provide sufficient supply to cover the demand for all 7 days (=24 + 12 + 14 + 20 + 18 +
14 + 22 = 124}, Sources 2 to 8 correspond to the 7 days of the week. The amount of supply for
each of these sources equals the number of used blades at the end of the associated day. For ex-
ample, source 2 (i.e., Monday) will have a supply of used blades equal to the demand for Mon-
day. The unit “transportation cost” for the model is $12, $6, or $3, depending on whether the blade
is supplied from new blades, overnight sharpening, or 2-day sharpening. Notice that the overnight
service means that used blades sent at the end of day ¢ will be available for use at the stars of day
i + 1 or day { + 2, because the slow 2-day service will not be available until the start of day
i + 3. The “disposal” column is a dummy destination needed to balance the model. The com-

plete model and its solution are given in Table 5.13.

TABLE 5.13 Tool Sharpening Problem Expressed as a Transportation Model

1 2 3 4 5 6 7 8
Mon. Tue. Wed. Thu. Fr. Sart. Sun. Disposal
512 $12 $12 %12 $12 $12 $12 50
1-New
98
33 $0
2-Mon.
30
3-Tue.
30
4-Wed.
$0 |
5-Thu.
50
6-Fri.
4
$0
7-Sat.
30
8-Sun.
22
m.

14

18

14

22
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The problem has afternative optima at a cost of $840 {file toraEx5.2-2.txt}). The following table
summarizes one such solution.

Number of sharp blades (Target day)

Pcrio%l New Overnight 2-day Disposal
Moo. 24 (Mon.) 10(Tue.) + 8{Wed.) 6 (Thu.) 0
Tues. 2 (Tue.} 6 (Wed.) 6 (Fri.) 0
Wed. 0 14 (Thu.) 0 0
Thu. Q 12 (Fri.} 8 {Sun.) 0
Fri., 0 14 (Sat.) 0 4
Sat. 0 14 (Sun.) 0 0
Sun. 0 0 0 22

Remarks. The model in Table 5.13 is suitable only for the first week of operation because it
does not take into account the rotatioral nature of the days of the week, in the sense that this
week’s days can act as sources for next week’s demand. One way to handle this situation is to as-
sume that the very first week of operation starts with all vew blades for each day. From then on,
we use a model consisting of exactly 7 sources and 7 destinations corresponding to the days of
the week. The new model will be similar to Table 5.13 less source “New” and destination “Dis-
posal.” Also, only diagonal cells will be blocked {unit cost = M ). The remaining cells will have a
unit cost of either $3.00 or $6.00. For example, the unit cost for cell (Sat., Mon.) is $6.00 and that
for cells (Sat., Tue.), (Sat., Wed.), (Sat., Thu.), and (Sat., Fri.) is $3.00. The table below gives the
solution costing $372. As expected, the optimum solution will always use the 2-day service only.
The problem has alternative optima (see file toraBEx5.2-2a.txt).

Week { + 1

Week i Mon. Tue. Wed. Thu. Fri. Sat. Sun. Total
Mon. 6 18 24
Tue. 8 4 12
Wed. 12 2 14
Thu. 2 12 20
Fri. 4 14 18
Sat. 14 14
Sun. 10 12 22
Total 24 12 14 20 18 14 22

PROBLEM SET 5.2A3

L In Example 5.2-1, suppose that the holding cost per unit is period-dependent and is given
by 40, 30, and 70 cents for periods 1, 2, and 3, respectively. The penalty and production !
costs rematn as given in the example. Determine the optimum solution and interpret
the results.

*In this set, you may use TORA to find the optimum solution. AMPL and Solver models for the transporta-
tion problem will be introduced at the end of Section 5.3.2.
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In Example 5.2-2, suppose that the sharpening service offers 3-day service for $1 a blade
on Monday and Tuesday (days 1 and 2). Reformulate the problem, and mterpret the opti-
mum solution.

In Example 5.2-2,if a blade is not used the day it is sharpened, a holdimg cost of 50 cents
per blade per day is incurred. Reformulate the model, and interpret the optimum solution.
JoShop wants to assign four different categories of machines 1o five types of tasks. The
numbers of machines available in the four categories are 25, 30, 20, and 30. The numbers
of jobs in the five tasks are 20, 20, 30, 10, and 25. Machine category 4 cannot be assigned
to task type 4. Table 5.14 provides the unit cost (in dollars) of assigning a2 machine cate-
gory to a task type. The objective of the problem is to determine the optimum number of
machines in each category to be assigned to each task type. Solve the problem and inter-
pret the solution.

The demand for a perishable item over the next four months is 400, 300, 420, and 380
tons, respectively. The supply capacities for the same months are 500, 600, 200, and 300
tons. The purchase price per ton varies from month to month and is estimated at $100,
$140, 3120, and $150, respectively. Because the item is perishable, a current month’s sup-
ply must be consumed within 3 months (starting with carrent month). The storage cost
per ton per month is $3. The nature of the item does not allow back-ordering: Solve the
problem as a transportation model and determine the optimum delivery schedule for the
item over the next 4 months.

The demand for a special small engine over the next five quarters is 200, 150, 300, 250,
and 400 units. The manufacturer supplying the engine has different production capacities
estimated at 180, 230, 430, 300, and 300 for the five quarters. Back-ordering is not al-
lowed, but the manufacturer may use overtime to fill the immediate demand, if necessary.
The overtime capacity for each period is half the regular capacity. The production costs
per unit for the five periods are $100, $96, $116, $102, and 3106, respectively. The over-
time production cost per engine is 50% higher than the regular production cost. If an en-
gine is produced now for use in later periods, an additional storage cost of $4 per engine
per period is incurred. Formulate the problem as a transportation model. Determine the
optimum number of engines to be produced during regular time and overtime of each
period.

Periodic preventive maintenance is carried out on aircraft engines, where an important
component must be replaced. The nurnbers of aircraft scheduled for such maintenance
over the next six months are estimated at 200, 180, 300, 198, 230, and 290, respectively. All
maintenance work is done during the first day of the month, where a used component
may be replaced with a new or an overhauled component. The overhauling of used com-
ponents may be done in a local repair facility, where they will be ready for use at the be-
ginning of next month, or they may be sent to a central repair shop, where a delay of

TABLE 5.14 Unit Costs for Problem 4

Task type
1 2 3 4 5

10 2 3 15 9
10 15 y 4
15 3 14 7 15
20 15 13 — 8

Machine category

LSRN O
LA
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TABLE 5.15  Bids per Acre for Problem &

Location
1 2 3
1| $s20 w0 8570
2 | = $510 495
Bidder o | ges0  _—  $240
4 | $180 3430 $710

3 months (including the month in which maintenance occurs) is expected. The repair cost
in the local shop is $120 per component. At the central facility, the cost is only $35 per
component. An overhauled component used in a later month will incur an additional
storage cost of $1.50 per unit per month. New components may be purchased at $200
each in month 1, with a 5% price increase every 2 months. Formulate the problem as a
transportation model, and determine the optimal schedule for satisfying the demand for
the component over the next six months.

8. The National Parks Service is receiving four bids for logging at three pine forests in
Arkansas. The three locations include 10,000, 20,000, and 30,000 acres. A single bidder
can bid for at most 50% of the total acreage available. The bids per acre at the three loca-
tions are given in Table 5.15. Bidder 2 does not wish to bid on location 1, and bidder 3
cannot bid on location 2.

(a) Inthe present situation, we need to maximize the total bidding revenue for the
Parks Service. Show how the problem can be formalated as a transportation model.

(b) Determine the acreage that should be assigned 1o each of the four bidders.

THE TRANSPORTATION ALGORITHM

The transportation algorithm follows the exact steps of the simplex method (Chapter 3).
However, instead of using the regular simplex tableau, we take advantage of the spe-
cial structure of the transportation model to organize the computations in a more con-
venient form.

The special transportation algorithm was developed early on when hand compu-
tations were the norm and the shortcuts were warranted. Today, we have powerful
computer codes that can solve a transportation model of any size as a regular LP* Nev-
ertheless, the transportation algorithm, aside from its historical significance, does pro-
vide iusight into the use of the theoretical primal-dual relationships (introduced in
Section 4.2) to achieve a practical end result, that of improving hand computations. The
exercise i§ theoretically intriguing.

The details of the algorithm are explained using the following numeric example.

*In fact, TORA handles atl necessary computations in the background using the regular simplex method and
uses the transportation model format only as a screen “veneer.”

iz,
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TABLE 5.16  SunRay Transportation Model

Mil
1 2 3 4 Supply
10 2 20 11
1
Xy X2 X X4 15
12 7 9 20
Silo 2
X X Xay Xy 25
4 14 16 18
3
X3 X3 X33 X34 10

Demand 5 15 15 15

Example 5.3-1 (SunRay Transport)

SunRay Transport Company ships truckloads of grain from three silos te four mills. The supply
(in truckloads) and the demand (also in truckloads) together with the unit transpostation costs
per truckload on the different routes are summarized in the transportation model in Table 5.16.
The unit transportation costs, ¢;;, (shown in the northeast corner of each box) are in hundreds of
dollars. The model seeks the minimum-cost shipping schedule x; between silo { and mill ;
(i=1,2,%j=1,23,4).

Summary of the Transportation Algorithm. The steps of the transportation algorithm
are exact parallels of the simplex algorithm.

Step 1. Determine a starting basic feasible solution, and go to step 2.

Step 2. Use the optimality condition of the simplex method to determine the
entering variable from among all the nonbasic variables. If the optimality
condition 1s satisfied, stop. Otherwise, go to step 3.

Step 3. Use the feasibility condition of the simplex method to determine the leaving
variable from among all the current basic variables, and find the new basic so-
lution. Return to step 2.

Determination of the Starting Solution

A general transportation model with 2 sources and n destinations has m + # constraint
equations, one for each source and each destination. However, because the transporta-
tion model is always balanced (sum of the supply = sum of the demand), one of these
equations is redundant. Thus, the model has m + n — 1 independent constraint equa-
tions, which means that the starting basic solution consists of m + n — 1 basic variables.
Thus, in Example 5.3-1, the starting solution has 3 + 4 — 1 = 6 basic variables.

M n e A i ey 2 ey — =
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The special structure of the transportation problem aliows securing a nonartifi-
cial starting basic solution using one of three methods:’

1. Northwest-corner method
2. Least-cost method
3. Vogel approximation method

~The three methods differ in the “quality” of the starting basic solution they produce, in
the sense that a better starting solution yields a smaller objective value. In general,
though not always, the Vogel method yields the best starting basic solution, and the
northwest-corner method yields the worst. The tradeoff is that the northwest-comer
method involves the least amount of computations.

Northwest-Corner Method. The method starts at the northwest-corner cell (route) of
the tableau (variable x,,).

Step 1. Allocate as much as possible to the selected cell, and adjust the associated
amounts of supply and demand by subtracting the allocated amount.

Step 2. Cross out the row or column with zero supply or demand to indicate that no
further assignments can be made in that row or columa. If both a row and a
column net to zero simultaneously, cross out one only, and leave a zero sup-
ply (demand) in the uncrossed-out row {column).

Step 3. If exactly one row or column is left uncrossed out, stop. Otherwise, move to
the cell to the right if a column has just been crossed out or below if a row has
been crossed out. Go to step 1.

Example 5.3-2

The application of the procedure to the model of Example 5.3-1 gives the starting basic solution
in Table 5.17. The arrows show the order in which the allocated amounts are generated.
The starting basic solution is

x;=5x2=10
Xp =3, x3=15,xy =5
Xy = 10

The associated cost of the schedule is

z2=5X10+10X24+5X7+15X9+5%X20+ 10 X 18 = §520

Least-Cost Method. The least-cost method finds a better starting solution by
concentrating on the cheapest routes. The method assigns as much as possible to the
cell with the smallest unit cost (ties are broken arbitrarily}. Next, the satisfied row or
column is crossed out and the amounts of supply and demand are adjusted accordingly.

Sall three methods are featured in TORA's tutorial module. See the end of Section 5.3.3.




ae
or

5.3 The Transportation Algorithm 209

TABLE 5.17 Northwest-Corner Starting Solution

1 2 3 4 Supply
10 2 20 11
) . - s
9 20
2 s g | 2
|
4 14 16| y 18
3 #eE | 10
Demand 5 15 15 15

If both a row and a column are satisfied simultaneously, only one is crossed out, the
same as in the northwest-corner method. Next, look for the uncrossed-out cell with
the smallest unit cost and repeat the process until exactly one row or column is left
uncrossed out.

Example 5.3-3

The least-cost method is applied to Exampie 5.3-1 in the following manner:

1. Cell (1, 2) has the least unit cost in the tableau (= $2). The most that can be shipped
through (1,2) is x,; = 15 truckloads, which happens to satisfy both row 1 and columa 2 si-
multaneously. We arbitrarily cross out column 2 and adjust the supply in row 1 to 0.

2. Cell (3,1) has the smallest uncrossed-out unit cost (= $4). Assign x3; = 5, and cross out
column 1 because it is satisfied, and adjust the demand of row 3 to 10 — 5 = 5 truckloads.

3. Continuing in the same wmanner, we successively assign 15 truckloads to cell (2, 3),
0 truckloads to cell (i, 4), § truckloads to cell (3, 4), and 10 truckloads to cell (2, 4}
(verifyt).

The resulting starting solution is summarized in Table 5.18. The arrows show the order in
which the allocations are made. The starting solution (consisting of 6 basic variables) is
x2 = 15, x14 = 0, xpy = 15, xp9 = 10, x5y = 5, X34 = 5. The associated objective value is

z=15X2+0X11+15X9+10x20+35 X4 +5X18=8475

The quality of the least-cost starting solution is better than that of the northwest-
corner method (Example 5.3-2) because it yields a smaller value of z ($475 versus $§520
in the northwest-corner method).

Vogel Approximation Method (VAM). VAM is an improved version of the least-cost
method that generally, but not always, produces better starting solutions.

Step 1. For each row (column), determine a penalty measure by subtracting the
smallest unit cost element in the row (column) from the next smallest unit
cost element in the same row (column).
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TABLE 5.18 Least-Cost Starting Solution

1 2 3 4 Supply
10| (start) 2 20 11
1 = Lsm |

d
12( 7 / 9

¥ 4L 14 16 18
s

10

Dermand 5 15 15 15

Step 2. Identify the row or column with the largest penalty. Break ties arbitrarily.
Allocate as much as possible to the variable with the least unit cost in the se-
lected row or column. Adjust the supply and demand, and cross out the satis-
fied row or column. If a row and a column are satisfied simultaneously, only
one of the two is crossed out, and the remaining row (column) is assigned

zero supply (demand).

(a} If exactly one row or column with zero supply or demand remains un-
crossed out, stop.

(b) If one row (column) with positive supply (demand) remains uncrossed
out, determine the basic variables in the row (column) by the least-cost
method. Stop.

{¢) If all the uncrossed out rows and columns have (remaining) zero supply
and demand, determine the zero basic variables by the least-cost
method. Stop.

(d) Otherwise, go to step 1.

Step 3.

Example 5.3-4

VAM is applied to Example 5.3-1. Table 5.19 computes the first set of penalties.

Because row 3 has the largest penalty (= 10) and cell (3, 1} has the smallest unit cost in that
row, the amount 5 is assigned to x;;. Column 1 is now satisfied and must be crossed out. Next,
new penalties are recomputed as in Table 5.20.

Table 5.20 shows that row 1 has the highest penalty {= 9). Hence, we assign the maximum
amount possible to cell (1,2), which yields x;; = 15 and simultaneously satisfies both row 1 and
column 2. We arbitrarily cross out colurnn 2 and adjust the supply in row 1 to zero.

Continuing in the same manner, row 2 will produce the highest penalty {= 11), and we as-
sign X33 = 15, which crosses out column 3 and leaves 10 units in row 2. Only column 4 is left, and
it has a positive supply of 15 units. Applying the least-cost method to that column, we successively
assign x4 = 0, x99 = 5, and x,; = 10 (verify!). The associated objective value for this solution is

=15 X2+0X11+15X9+10X20+5 X4+ 5X18 = %475

This solution happens to have the same objective value as in the least-cost method.




[=9

woe

5.3 The Transportation Algorithm 211

TABLE 5.1¢ Row and Column Penalties in VAM

1 2 3 4 Row penalty
10 2 20 11 10-2=8
1 15
12 7 9 20 9-7=12
4 14 16 18 14 — 4 =4f
3 5 ) 0
5 15 15 15
Column penalty 10 — 4 7-2 16 -9 1I8-1
=6 =5 =7 =7

TABLE 5.20 Farst Assignment in VAM (x5, = 5)

1 2 3 4 Row penalty

1 Nt 2 20 11 9:
15

) 7 9 20 2
25

3 14 16 18 2
10

5 15 15 15
Column penalty — 5 7 7

PROBLEM SET 5.3A

1. Compare the starting solutions obtained by the northwest-corner, least-cost, and Vogel
methods for each of the following models:

*@) (b) (©)
0 2 16 1 2 6| 7 5 1 8 [12
2 1 517 0 4 2|12 2 4 0|14
2 4 317 3 1 5 |11 3 6 7| 4
5 5 10 10 10 10 9 10 11

5.3.2 lIterative Computations of the Transportation Algorithm

After determining the starting solution (using any of the three methods in Section 5.3.1),
we use the following algorithm to determine the optimum solution:

Step 1. Use the simplex optimality condifion to determine the entering variable as the
cwrent nonbasic variable that can improve the solution. If the optlmallty con-
dition is satisfied, stop. Otherwise, go to step 2.

Step 2. Determine the leaving variable using the simplex feasibility condition. Change
the basis, and return to step 1.
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The optimality and feasibility conditions do not involve the familiar row opera-
tions used in the simplex method. Instead, the special structure of the transportation
model allows simpler computations.

Example 5.3-5

Solve the transportation model of Example 5.3-1, starting with the northwest-corner solution.

Table 5.21 gives the northwest-corner starting solution as determined in Table 5.17, Ex-
ample 5.3-2.

The determination of the entering variable from among the current nonbasic varables
(those that are not part of the starting basic solution) is done by computing the nonbasic coeffi-
cients in the z-row, using the method of multipliers (which, as we show in Section 5.3.4, is rooted
in LP duality theory).

{n the method of multipliers, we associate the multipliers «; and ¥; with row { and column j
of the transportation tableau. For each current basic variable x;;, these multipliess are shown in
Section 3.3.4 to satisfy the following equations:

u; + v; = ¢, for each basic x;;

As Table 5.21 shows, the starting solution has 6 basic variables, which leads to 6 equations ia 7
unknowns. To solve these equations, the method of multipliers calls for arbitrarily sefting any
u; = 0, and then solving for the remaining variables as shown below.

Basic variable (g, v) Equation Solution
Xy u, + vy =10 Setwu; =0—=v, =10
X3 )+ v, = w=0-v,=2
Xy Uy + vy =7 v =2>u;=5
Xy g + vy =9 m=5vy=4
Xo4 i + vy =20 y=5-sv =15
Xy H3+V¢=18 V4=15—)u3=3

To summarize, we have
=0 u; =5u,=3
=10, =2, =4,1,=15
Next, we use u; and v; to evaluate the nonbasic variables by computing

L + v, — ¢, for each nonbasic x;
{ ¢ if i

TABLE 5.21 Starling [teration

1 2 3 4 Supply
10 2 20 1
1

5 10 15

, 2 7 9 20
5 15 s | 2s

4 14 16 18
3 10 1

Demand 5 15 15 15
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The results of these evaluations are shown in the following table:

Nonbasic variable w v — gy

X3 R|+93"C|3=0+4—20="16
X4 U tv;—o=0+15-11=4
Xq Uyt vy —epy =5+1W0-12=3
X3 3 +v —(y =3+ -4=9

X H3+V2—C3'2=3+2—14=""9
X33 mtrvy—cp=3+4-16=-9

The preceding information, together with the fact that «; + v; - ¢y = 0 for each basic xj;, is
actually equivalent to computing the z-row of the simplex tableau, as the following summary shows.

Basic Xy X2 X X X2 X Yoy X2

Because the transportation model seeks to minimize cost, the entering variable is the one hav-
ing the rmost positive coefficient in the z-row. Thus, x5, is the entering variable.

The preceding computations are usually done directly on the transportation tableau as
shown in Table 5.22, meantng that i is not necessary really 1o write the (i, v)-equations explicitly.
Instead, we start by setting 1; = 0. Then we can compute the v-values of all the columns that
have basic variables in row 1—narnely, v; and ;. Next, we compute i, based on the (i, v)-equation
of basic xy,. Now, given u,, we can compute 93 and v,. Finally, we determine us using the basic
equation of xs3. Once all the w’s and v’s have been determined, we can evaluate the nonbasic
variables by computing «; + v; — ¢y for each nonbasic x;;. These evaluations are shown in
Table 5.22 in the boxed southeast corner of each cell.

Having identified x4, as the entering variable, we need to determine the leaving variable.
Remember that if x4, enters the solution to become basic, one of the current basic variables must
leave as nonbasic (at zero level).

TABLE 5.22 lteration 1 Calculations

W= 10 vy = 2 ¥y, = 4 W= 15 Supply
10 2 20 11
— 5 10 15
16 [4]
7 9 20
Uy = 3 5 15 5 25
14 16 18
uy =3 10 10
; -9 I -9
Demand 5 15 15 15

®The tutorial module of TORA is designed to demonstrate that assigning a zero initial value to any & or v
does not affect the optimization results. See TORA Moment on page 216.
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The selection of x5 as the entering variable means that we want to ship through this route
because it reduces the total shipping cost. What is the most that we can ship through the new
route? Observe in Table 5.22 that if route (3, 1) ships € units {(i.e., x5, = §}, then the maximum
value of 8 is determined based on two conditions.

1. Supply limits and demand requirements remain satisfied.
2. Shipments through all routes remain nonnegative.

These two conditions determine the maximum value of 9 and the leaving variable in the fol-
lowing manaer. First, construct a closed loop that starts and ends at the entering variable cell, (3,
1). The loop consists of connected horizontal and vertical segments only (no diagonals are al-
lowed).” Except for the entering variable cell, each corner of the closed loop must coincide with
a basic variable. Table 5.23 shows the loop for x;;. Exactly one loop exists for a given entering
variable.

Next, we assign the amount 0 to the entering variable cell (3, 1). For the supply and demand
limits to remain satisfied, we must aliernate between subtracting and adding the amount 9 at the
successive corners of the loop as shown in Table 5.23 (it is immaterial whether the loop is traced
in a clockwise or counterclockwise direction). For ¢ = (, the new values of the variables then re-
main nonnegative if

5-6=0
X7 5—-8=0
X3 =10 —-6=0

11

The corresponding maximum value of § is 3, which occurs when both x;, and xp, reach zero Jevel.
Because only one current basic variable must leave the basic solution, we can choose either x|,
OT Xy as the leaving variable. We arbitrarily choose x;, 1o leave the solution.

The selection of x3; (= 5) as the entering variable and x), as the leaving variable requires
adjusting the values of the basic variables at the corners of the closed loop as Table 5.24
shows. Because each unpit shipped through route (3, 1) reduces the shipping cost by
$9 (= uy + v, — c3y), the total cost associated with the new schedule is $9 X § = $45 less
than in the previous schedule. Thus, the new cost is $520 — $45 = $475.

TABLE 5.23 Determination of Closed Loop for xs,

v, = 10 v, =2 vy = 4 vy =15 Supply
[ 10 2 20 11
w =0 5~ O=—| 10+ O 15
L 2 A -16 [ 4]
12 i 7 9 20
U =5 s 5 — @ ~---f--mees 15 B 5+0 25
[ 3| B A
A 14 16 P18
=3 | FRERE e e > 19-6 |10
R [ -9 —g
Demand 5 15 15 15

"TORA’s tutorial module allows you to determine the cells of the closed loop interactively with immediate
feedback regarding the validity of your selections. See TORA Moment on page 216.
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€ TABLE 5.24 Iteration 2 Calculations
W
n
u; = O
=35
3=
3
ﬂ- iz = 3
th
f
& Demand
nd
he
ed TABLE 5.25 [Iteration 3 Calculations {Optimal)
ce-
v = =3 v, =2 v; =4 vy =11 Supply
10 2 20 11
u =0 5 10 15
| —13 -16
12 7 9 20
1 =5 10 15 25
':' ' -10 [ 4
1 4 14 16 18
=7 5 5 10
Tes ’_ ’—
.24 =3 =3
.b Demand 5 15 15 15
Y
less

Given the new basic solution, we repeat the computation of the multipliers « and v, as Table 5.24
shows. The entering variable is x;,. The closed loop shows that x4 = 10 and that the leaving
variable is xo4.

The new solution, shown in Table 5.25, costs $4 X 10 = $40 less than the preceding one,
thus yielding the new cost $475 — $40 = $435. The new u; + v; — ¢ are now negative for ail
nonbasic x;. Thus, the solution in Table 5.25 is optimal.

The following tabie summarizes the optimum solution.

From silo To mill Number of truckloads

5
10
10
15

5

5

L L B B2 =
B T S T

timal cost = $435
diate Optimal cost = §
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TORA Moment.

From SoIve/ModIfy Menu select Solve; = Iférgtions;, and choose one of the three
methaods (northwést corner, least-cost, or Vogel) to start the transportation model iter-
ations. The iterations module offers two useful interactive features:

1. You can set any « or v to zero before generating Iteration 2 (the default is &y = 0).
Observe then that although the values of &; and v; change, the evaluation of the
nonbasic cells (= ; + v; — ¢;;) remains the same. This means that, initially, any u or
v can be set to zero (in fact, any value) without affecting the optimality calculations.

2. You can test your understanding of the selection of the closed loop by clicking (in
any order) the corner cells that comprise the path. If your selection 1s correct, the
cell will change color (green for entering variable, red for leaving variable, and
gray otherwise).

Solver Moment.

Entering the transportation model into Excel spreadsheet is straightforward. Figure 54
provides the Excel Solver template for Example 5.3-1 (file solverEx5.3-1.xls), together
with all the formulas and the definition of range names.

In the input section, data include unit cost matrix {cells B4:E6), source npames
{cells A4:Ab), destination names {cells B3:E3), supply (cells F4:F6), and demand (cells
BTE7). In the output section, cells B11:E13 provide the optimal solution in matrix
form. The total cost formula is given in target cell A10.

AMPL Moment.

Figure 5.5 provides the AMPL model for the transportation model of Example 5.3-1
(file amplEx5.3-1a.txt). The names used in the model are self-explanatory. Both the
constraints and the objective function follow the format of the LP model presented in
Example 5.1-1.

The model uses the sets sNodes and dNodes to conveniently allow the use of the
alphanumeric set members {s1, $2, s3} and {D1, D2, D3, D4} which are entered
in the data section. All the input data are then entered in terms of these set members as
shown in Figure 5.5.

Although the alphanumeric code for set members is more readable, generating
them for large problems may not be convenient. File ampiEx5.3-1b shows how the
same sets can be defined as {1..m) and {2..n}, where m and o represent the number
of sources and the number of destinations. By simply assigning numeric values for m
and n, the sets are automatically defined for any size model.

The data of the transportation model can be retrieved from a spreadsheet (file
TM.xls) using the AMPL table statement. File amplEx3.5-1c.txt provides the details.
To study this model, you will need to review the material in Section A.5.5.
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FIGURE 5.4

Excel Solver solution of the transpostation model of Example 5.3-1 (File solverEx5.3-1.xls)

PROBLEM SET 5.3B

1. Consider the transportation models in Table 5.26.

(a)
®)
©)

Use the northwest-corner method to find the starting solution.
Develop the iterations that lead to the optimum solution.
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K T e
Input data: | ! I | Range name| Cells -
Unit Cost Matrix D1 D2 | D3 i 04 Supply totalCost __ [A10
L S 2 12 | 11 [ 15 | nitCost  (B4E6_ | i
52 12 7 i 8 20 25 supply  IF4:F6 o __wi
53 4 14+ 16 18 10  ___|demand  |B7E? |
7 . Demand__5 15[ 15 15 o rowsum _ |FAuFi3|
78| Optimum solution: ! l _ colSum B14E1S|
i Totalcos‘t o i i skipment  |B11:£43
% 01 | D2 { D3 | D4 jrowSum|
0 5 [i] 10 15 ! Call Formuda Copy to
o 1 1 15 9 25 ) | &6 |63 ! C10:E1D
5 0 0 5 101 | A1 [=A ! _A12:A13
i5! 15! 15 |Faa | =sumsatiserin | _F1zFi3_ |
! b L | 819 [-sumpsines1y | C14:€14
i =SUMPRODLCT(uACcaY, shipmenty
R = | !
i

TORA Experiment. Use TORA's Iterations module to compare the effect of using

the northwest-corner rule, least-cost method, and Vogel method on the number of
iterations leading to the optimum solution.

()
(e)

Solver Experiment. Solve the problem by modifying file solverEx5.3-1.xls.
AMPL Experiment. Solve the problem by modifying file amplEx5.3-1b.txt.

2. In the transportation problem in Table 5.27, the total demand exceeds the total supply.
Suppose that the penalty costs per unit of unsatisfied demand are $5, $3, and $2 for
destinations 1, 2, and 3, respectively. Use the least-cost starting solution and compute
the iterations leading to the optimum sclution.
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f----- Transporation model (Example 5.3-1}-----
set sNodes;
set diNodes;
param c{sNodes,dNodes}:
param supply{shodes);
param demand{dNodes};
var x{sNodes,dNodes}>=0;
minimize z:sum {i in sWodes,j in dNodeslc[i,jl}*x[i,J]:
subject to
source {i in sNodes}:sum{j in diodes}x[i.7)=supplyfi];
dest {j in dNodes}:sum{i in sNodes}x(i,j)=demand(]):
data; .
set sNodes:=S1 S§2 53:
set dNodes:=D1 D2 D3 D4:
param C:
D1 D2 D3 D4 :=
s1 10 2 20 11
s2 12 7 9 20
53 4 l4a 1l 18;
param supply:= S1 15 §2 25 53 1¢;
param demand:=D1 S D2 15 D3 15 D4 15;
solve;display z. x:

FIGURE 5.5
AMPL model of the transportation mode! of Exampie 5.3-1 (File amplEx53-1a.txt)

TABLE 5.26 Transportation Models for Problem 1

{i) (ii) (i)
0 %2 81| 6 $10 $4 82| 8 4
$2 %1 $5| 9 $2 $3 4| s 7
2 %4 $3| 5 $1 %2 30| 6 19
5 5 10 7 6 6

TABLE 5.27 Data for Probiem 2

$5 $1 7 | 10
$6 $4 §6 | 80
8 32 85| 15
75 20 50

3. In Problem 2, suppose that there are no penalty costs, but that the demand at destination
3 must be satisfied completely.

(a) Find the optimal solution.
(b) Solver Experiment Solve the problem by maodifying file solverEx5.3-1.xls.
(c}y AMPL Experiment. Solve the problem by modifying file amplEx5.3b-1.txt.
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TABLE 5.28 Doata for Problem 4

31 $2 §1 | 20
3 $4 §5 | 40
$2 $3 £3 | 30

30 20 20

TABLE 5.29 Data for Problem 6

10 10
20 20 | 40

10 20 20

In the unbalanced transportation problem in Table 5.28, if a unit from a source is not
shipped out (to any of the destinatious), a storage cost is incurred at the rate of $5, $4,
and $3 per unit for sources 1, 2, and 3, respectively. Additionally, all the supply at
source 2 must be shipped out completely to make room for a new product. Use
Vogel’s starting solution and determine all the iterations leading to the optimum ship-
ping schedule.

Ina3 X 3 transportation problem, let x; be the amount shipped from source  to desti-
nation j and let ¢; be the corresponding transportation cost per unit. The amounts of sup-
ply at sources 1,2, and 3 are 15, 30, and 85 units, respectively, and the demands at
destinations 1,2, and 3 are 20, 30, and 80 units, respectively. Assume that the starting
northwest-corner solution is optimal and that the associated values of the multipliers are
givenasu) = —2,uy = 3,u3 = 5,9 = 2,7 = 5,and 3 = 10.

(a} Find the associated optimal cost.

(b} Determine the smallest value of ¢;; for each nonbasic vanable that will maintain the
optimality of the northwest-corner solution.

The transportation problem in Table 5.29 gives the indicated degenerate basic solution

(i.e., at least one of the basic variables is zero). Suppose that the multipliers associated

with this solutionare ; = 1,4, = —1,9, = 2,%; = 2, and vy = 5 and that the unit cost

for all (basic and nonbasic) zero x;; variables is given by

C;j=f+j@,—00<6<00

(a} If the given solution is optimal, determine the assoctated optimal value of the objec-
tive function.

(b) Determine the value of § that will guarantee the optimality of the given solution.
(Hint: Locate the zero basic variable.)

Consider the problem

Mmoo

Minimize z = z z%xﬂ-

=1j=1

i
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TABLE 5.30 Data for Problem 7

$1 $1 2 | 5
$6 5 $1 |6
2 7 1

subject to

Ex;jz ﬂ:‘,f = 1,2, P /£

Zx,-’- = bjj= 1,2, PPN

X = 0,_aIl iandj

It may appear logical to assume that the optimum solution will require the first (second)
set of inequalities to be replaced with equations if Za; = 2b;(3e; = 3b;). The coun-
terexample in Table 530 shows that this assumption is not correct.

Show that the application of the suggested procedure yields the solution x;; = 2,
x12 = 3, xpp = 4, and x,4 = 2, with z = $27, which is worse than the feasible solution

X = 2, X2 = 7, and Xy = 6, with z = §15.

Simplex Method Explanation of the Method of Multipliers

The relationship between the method of multipliers and the simplex method can be ex-
plained based on the primal-duat relationships (Section 4.2). From the special structure
of the LP representing the transportation model (see Example 5.1-1 for an illustra-
tion), the associated dual problem can be written as

m n
Maximize z = Y au; + >,bw;
i=1 =

subject to
u; + v; < ¢y, alliand j

u; and v; unrestricted

where

a; = Supply amount at source {

b; = Demand amount at destination j

¢;; = Unit transportation cost from source i to destination j

u; = Dual variable of the constraint associated with source {

v; = Dual variable of the constraint associated with destination j

5.4
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From Formula 2, Section 4.2.4, the objective-function coefficients (reduced
costs) of the variable x;; equal the difference between the left- and right-hand sides
of the corresponding dual constraint—ithat is, #; + v; — ¢;;. However, we know that
this quantity must equal zero for each basic variable, which then produces the fol-

lowing result:

u; + v; = ¢, for each basic variable x;;.

There are m + n — 1 such equations whose solution (after assuming an arbitrary
value u, = 0) yields the multipliers «; and »;. Once these multipliers are computed, the
entering variable 15 determined from all the nonbasic variables as the one having the
largest positive u; + v; — ¢;;.

The assignment of an arbitrary value to one of the dual variables (i.e., u; = Q)
may appear inconsistent with the way the dual variables are computed using Method 2
in Section 4.2.3. Namely, for a given basic solution (and, hence, inverse), the dual values
must be unique. Problem 2, Set 5.3¢, addresses this point.

PROBLEM SET 5.3C

1. Write the dual problem for the LP of the transportation problem in Example 5.3-5
(Table 5.21). Compute the associated optimum dual objective value using the optimal
dual values given in Table 5.25, and show that it equals the optimal cost given in the
example.

2. In the transportation model, one of the dual variables assumes an arbitrary value. This
means that for the same basic solution, the values of the associated dual variables are not
unique. The result appears to contradict the theory of linear programming, where the
dual values are determined as the product of the vector of the objective coefficients for
the basic variables and the associated inverse basic matrix {(see Method 2, Section 4.2.3).
Show that for the transportation model, although the inverse basis is unique, the vector
of basic objective coefficients need not be so. Specifically, show that if ¢;; is changed to
¢iy + k forall i and j, where & 1s a constant, then the optima! values of x;; will remain the
same. Hence, the use of an arbitrary value for a dual variable is implicitly equivalent to
assuming that a specific constant k is added to all ¢y;.

THE ASSIGNMENT MODEL

“The best person for the job” is an apt description of the assignment model. The situa-
tion can be tllustrated by the assignment of workers with varying degrees of skill to
jobs. A job that happens to match a worker’s skill costs less than one in which the op-
erator is not as skillful. The objective of the model is to determine the minimum-cost
assignment of workers to jobs. '

The general assignment model with » workers and n jobs is represented in
Table 5.31.

The element c¢; represents the cost of assigning worker i to job j {i,j =
1,2,..., n). There is no loss of generality in assuming that the number of workers always
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TABLE 5.31 Assignment Model

Jobs
1 2 n
1 Cu Cn . Cla 1
2 Ca n . L3, 1
‘Worker
n Cal Cu Cun 1
1 1 1

equals the number of jobs, because we can always add fictitious workers or fictitious
jobs to satisfy this assumption.

The assignment model is actually a special case of the transportation model in
which the workers represent the sources, and the jobs represent the destinations. The
supply (demand) amount at each source (destination) exactly equals 1. The cost of
“trapsporting” worker i to job j is ¢;;. In effect, the assignment model can be solved di-
rectly as a regular transportation modei. Nevertheless, the fact that all the supply and
demand amounts equal 1 has led to the development of a simple solution algorithm
called the Hungarian method. Although the new solution method appears totally un-
related to the transportation model, the algorithm is actually rooted in the simplex
method, just as the transportation model ts.

5.4.1 The Hungarian Method?®

We will use two examples to present the mechanics of the new algorithm. The next sec-
tion provides a simplex-based explanation of the procedure.

Example 5.4-1

Joe Klyne’s three children, John, Karen, and Terri, want to earn some money to take care of per-
sonal expenses during a school trip to the local zoo. Mr. Klyne has chosen three chores for his
children: mowing the lawn, painting the garage door, and washing the family cars. To avoid antic-
ipated sibling competition, he asks them to submit {secret) bids for what they feel is fair pay for
each of the three chores. The understanding is that all three children will abide by their father’s
decision as ta who gets which chore. Table 5.32 summarizes the bids received. Based on this in-
formation, how should Mr. Klyne assign the chores?
The assignment problem will be solved by the Hungarian method.

Step 1. For the originai cost matrix, identify each row’s minimum, and subtract it from all the
‘entries of the row. .

8As with the transportation model, the classical Hungarian method, designed primarily for Aand computa-
tions, is something of the past and is presented here purely for historical reasons Today, the need for such
cornputational shorteus is not warranted as the prablem can be solved as a regular LP using highly efficient
commpuler codes.
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TABLE 5.32 Klyne's Assigament Problem

Mow Paint Wash

John $15 $10 3G
Karen %9 $15 $10
Terri $10 $12 38

Step 2. For the matrix resulting from step 1, identify each column’s minimum, and subtract it
from all the entries of the column.

Step 3. Tdentify the optimal soluiion as the feasible assignment associated with the zero ele-
ments of the matrix obtained in step 2.

Let p; and g; be the minimum costs associated with row  and column j as defined in steps 1
and 2, respectively. The row minimums of step 1 are computed from the original cost matrix as
shown in Table 5.33.

Next, subtract the row minimum from each respective cow to obtain the reduced matrix in
Table 5.34.

The application of step 2 yields the column minimums in Tabie 5.34. Subtracting these val-
ues from the respective columns, we get the reduced matrix in Table 5.35.

TABLE 5.33 Step 1 of the Hungarian Method

Mow Paint Wash Row minimum
John 15 10 Y =9
Karen 9 15 10 g =9
Terri 10 12 8 =8

TABLE 5.34 Step 2 of the Hungarian Method

Mow Paint Wash
John 6 i 0
Katen 0 6 i
Terri 2 4 ¢
Column minimum q =10 g =1 =0

TABLE5.35 Step 3 of the Hungarian Methad

Mow Paint ‘Wash

John 6 g 0
Karen 0 5 1
Terri 2 3 0
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The cells with underscored zego entries provide the optimum solution. This means that John
gets to paint the garage door, Karen gets to mow the lawn, and Terri gets to wash the family
cars. The total cost to Mr. Klyne is 9 + 10 + 8 = $27. This amount also will always equal
(prtp+rp)+{g+ta+q)=09+9+8+(0+1+0)= 3527 (A justification of this
resuit is given in the next section.)

The given steps of the Hungarian method work well in the preceding example be-
cause the zero entries in the final matrix happen to produce a feasible assignment (in the
sense that each child is assigned a distinct chore). In some cases, the zeros created by steps |
and 2 may not yield a feasible solution directly, and further steps are needed to find the
optimal (feasible) assignment. The following example demonstrates this situation.

Example 5.4-2

Suppose that the situation discussed in Example 5.4-1 is extended to four children and four
chores. Table 5.36 summarizes the cost elements of the problem.

The application of steps 1 and 2 to the matrix in Table 5.36 {(using p; = 1,p = 7,
P3=4,ps=54g; =04 =09 =3, and g, = 0) yields the reduced matrix in Table 5.37
(verify!).

The locations of the zero entries do not allow assigning unique chores to all the children.
For exampie, if we assign child 1 to chore 1, then column 1 will be eliminated, and child 3 will
not have a zero entry in the remaining three columns. This obstacle can be accounted for by
adding the following step to the procedure outlined in Example 5.4-1:

Step 2a. If no feasible assignment (with al} zero entries) can be secured from steps ! and 2,
(i) Draw the prinimum number of horizontal and vertical lines in the last reduced
matrix that will cover alf the zero entries.

TABLE 5.36 Assignment Model

Chore
1 2 3 4
1051 4 $6 $3
2 s 57 s10 so
Child s | g4 g5 $11 87
4| 88 7 s&8 s

TABLE 5.37 Reduced Assignment Matrix

Chore
1 2 3 4
1o 3 2 2
22 o o 2
Ghild, | g | 4 3
43 2 0 0
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TABLE 5.38 Application of Step 2a

Chore

TABLE 539 Optimal Assignment

Chore
1 2 3 4
1 1] 2 1 i
vy 2 3 a (1] 2
Child 3 0 0 3 5
4 4 P 0 0

(ii) Select the smallest uncovered entry, subtract it from every uncovered entry,
then add it to every entry at the intersection of two lines.

(iit) If no feasible assignment can be found among the resulting zero entries, repeat
step 2a. Otherwise, go to step 3 to determine the optimal assignment.

The application of step 2a 10 the last matrix produces the shaded cells in Table 5.38. The smallest
unshaded entry (shown in italics) equals 1. This entry is added to the bold intersection cells and
subtracted from the remaining shaded cells to produce the matrix in Table 5.39.

The optimum soiution (shown by the underscored zeros) calls for assigning child 1 to chore
1, child 2 to chore 3, child 3 to chore 2, and child 4 to chore 4. The associated optimal cost is
1 + 10 + 5 + 5 = §21. The same cost is also determined by summing the p;’s, the g;'s, and the
eniry that was subtracted after the shaded cells were determined—that 35, (1 + 7 + 4 + 5) +
(0+0+3+0)+ (1) =321,

ANPL Moment.

File amplEx5.4-2.txt provides the AMPL model for the assignment model. The model
is very similar to that of the transportation model.

PROBLEM SET 5.4A

1. Solve the assignment models in Table 5.40.
(a) Solve by the Hungarian method.
(b) TORA Experiment. Express the problem as an LP and solve it with TORA.
(¢) TORA Experiment. Use TORA 1o solve the problem as a transportation model.
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TABLE 5.40 Data for Probiem 1
(i) (i)

53 $8 $2 $10 $?, 33 N3 52 hX) ¥7
58 $7 $2 39 . 37 $6 31 85 36 36
$6 $4 82 37 $5 )1 %9 34 §7 310 3
8 $4 $2 $3 $5 $2 85 $4 Y §1
$9 $10 36 $9 310 39 36 $2 $4 $5

(d) Solver Experiment. Modify Excel file solverEx5.3-1.xls to solve the problem.
(e) AMPL Experiment. Modify amplEx5.3-1b.txt to solve the problem.
JoShop needs to assign 4 jobs to 4 workers, The cost of performing a job is a function of
the skills of the workers. Table 5.41 summarizes the cost of the assignments. Worker 1
cannot do job 3 and worker 3 cannat do job 4. Determine the optimal assignment using
the Hungarian method.
In the JoShop model of Problem 2, suppose that an additionat (fifth) worker becomes
available for performing the four jobs at the respective costs of $60, $45, $30, and $80. Is
it economical to replace one of the current four workers with the new one?
In the model of Problem 2, suppose that JoShop has just received a fifth job and that the
respective costs of performing it by the four current workers are $20, $10, $20, and $80.
Should the new job take priority over any of the four jobs JoShop already has?
A business executive must make the four round trips listed in Table 5.42 between the
head office in Dallas and a branch office in Atlanta.

The price of a round-trip ticket from Dallas is $400. A discount of 25% is granted if
the dates of arrivai and departure of a ticket span a weekend (Saturday and Sunday). If
the stay in Atlaata lasts more than 21 days, the discount is increased to 30%. A one-way

TABLE 5.41 Data for Problem 2

Job
1 2 3 4
1| $s0  $50 — $20
2 | $70  $40 $20 $30
Worker 5 | 00 $30 $50 —
4 | $70  $20 $60 $70

TABLE 5.42 Data for Problem §

Departure date from Dallas Return date to Dallas

Monday, June 3 Friday, June 7
Monday, June 10 Wednesday, June 12
Monday, June 17 Friday, June 21

Tuesday, June 25 Friday, June 28
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ticket between Dallas and Atlanta (either direction) costs $250. How should the execu-
tive purchase the tickets?

*6, Figure 5.6 gives a schematic layout of a machine shop with ifs existing work centers des-
ignated by squares 1, 2,3, and 4. Four new work centers, I, IT, IIT, and IV, are to be added
to the shop at the locations designated by circles 4, b, ¢, and 4. The objective 15 to assign
the new centers to the proposed locations (o minimize the total materials handling traf-
fic between the existing centers and the proposed ones. Table 5.43 summarizes the
frequency of trips between the new centers and the old ones. Materials handling equip-
ment travels along the rectangular aisles intersecting at the tocations of the centers.
For example, the one-way travel distance (in meters) between center 1 and location b
1530 + 20 = 50 m.

70

|
|
50 :
|

e 9=
|
|
30 [ [
[
|
[
{
{
|

20 -

|
|
S S

FIGURE 5.6
Machine shop layout for Problem 6, Set 5.4a

TABLE 5.43 Data for Probiem 6

New center
I iI 1 v

1 10 2 4 3
Existing 2 7 1 9 5
center 3 0 8 6 2
4 11 4 0 7
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5.4.2

7. In the Industrial Engineering Department at the University of Arkansas, INEG 4904 15 a
capstone design course intended to allow teams of students to apply the knowledge and
skills learned in the undergraduate curriculum to a practical problem. The members of
each team select a project manager, identify an appropriate scope for their project, write
and present a proposal, perform necessary tasks for meeting the project objectives, and
write and present a final report. The course instructor identifies potential projects and
provides appropriate information sheets for each, including contact at the sponsoring or-
ganization, project summary, and potential skills needed to complete the project. Each
design team is required to submit a report justifying the selection of team members and
the team manager. The report also provides a ranking for each project in order of prefer-
ence, Including justification regarding proper matching of the team’s skills with the pro-
ject objectives. In a specific semester, the [ollowing projects were identified: Boeing F-15,
Boeing F-18, Boeing Simulation, Cargil, Cobb-Vantress, ConAgra, Cooper, DaySpring
(layout), DaySpring {(matenial handling}, J.B. Hunt, Raytheon, Tyson South, Tyson East,
Wal-Mart, and Yellow Transportation. The projects for Boeing and Raytheon require U.S.
citizenship of all team members. Of the eleven design teams available for this semester,
four do not meet this requirement.

Devise a procedure for assigning projects to teams and justify the arguments you use
to reach a decision.

Simplex Explanation of the Hungarian Method

The assignment problem in which n workers are assigned to » jobs can be represented
as an LP model in the following manner: Let ¢;; be the cost of assigning worker i to job
j, and define

{1, if worker | is assigned to job f
x,j = .
0, otherwise

Then the LP model is given as

n "
Minimize z = D, > Xy
i=1j=1
subject to
"
EX"I' =1,i= 1,2.,.. , 1
=1
H
xy=1,7=12,...,n
‘=
xij =0orl

The optimal solution of the preceding LP mode] remains unchanged if a constant
is added to or subtracted from any row or column of the cost matrix (c;). To prove this
point, let p; and g, be constants subtracted from row i and column j. Thus, the cost ele-
ment ¢;; is changed to

¢ — — ——
G = C; — Pi TG

55
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Now

E;Ch‘xii = Z JZ(CU — P = 2 JE_C,-,-x,-; - EPE(;'“EJ) - ;%’(2%)

i i

Echxﬁ - Epi(l) - Ej:%‘(l)
[ i

I

ZZC;J'X”‘ — constant
TG

Because the new objective function differs from the original one by a constant, the op-
tomum values of x; must be the same in both cases. The development thus shows that
steps 1 and 2 of the Hungarian method, which call for subtracting p; from row { and
then subtracting ¢; from column j, produce an equivalent assignment model. In this re-
gard, if a feasible solution can be found among the zero entries of the cost matrix cre-
ated by steps 1 and 2, then it must be optimum because the cost in the modified matrix
cannot be less than zero.

If the created zero entries cannot yield a feasible solution (as Example 5.4-2
demonstrates), then step 2a {dealing with the covering of the zero entries) must be ap-
plied. The validity of this procedure is again rooted in the simplex method of linear
programming and can be explained by duality theory (Chapter 4) and the complemen-
tary slackness theorem (Chapter 7). We will not present the details of the proof here
because they are somewhat involved.

The reason {(py + pp+ --- +p,) +{g1 + ¢ + -~ + g,) gives the optimal
objective value is that it represents the dual objective function of the assignment
model. This result can be seen through comparison with the dual objective function of
the transportation model given in Section 5.3.4. [See Bazaraa and Associates (1990, pp.
499-508) for the details.]

THE TRANSSHIPMENT MODEL

The transshipment model recognizes that it may be cheaper to ship through intermedi-
ate or fransient nodes before reaching the final destination. This concept is more gen-
eral than that of the regular transportation model, where direct shipments only are
allowed between a source and a destination.

This section shows how a transshipment model can be converted to (and solved
as) a regular transportation model using the idea of a buffer.

Example 5.5-1

Two automobile plants, P1 and P2, are linked to three dealers, D1, 02, and D3, by way of two
transit centers, 71 and 72, according to the network shown in Figure 5.7. The supply amounts at
plants P1 and P2 are 1000 and 1200 cars, and the demand amounits at dealers D1, D2, ang D3,
are 800, 900, and 500 cars. The shipping costs per car (in hundreds of dollars) between pairs of
nodes are shown on the connecting links (or arcs) of the network.

Transshipment occurs in the network in Figure 5.7 because the entire supply amount of
2200 (= 1000 + 1200) cars at nodes P1 and P2 could conceivably pass through any node of the



230

Chapter 5 Transportation Model and Its Variants

FIGURE 5.7

Transshipment network between plants
and dealers

network before ultimately reaching their destinations at nodes D1, D2, and D3. In this regard,
each node of the network with both input and output arcs (771, 72, D1, and D2) acts as both a
source and a destination and is referred to as a transshipment node. The remaining nodes are ei-
ther pure supply nodes {P1 and P2) or pure demand nodes {(D3).

The transshipment model can be converted into a regular transportation model with six
sousces (P1, P2, T1, 72, D1, and D2) and five destinations (T4, T2, D1, D2, and D3). The amounts
of supply and demand at the different nodes are computed as

Supply at a pure supply node = Original supply
Demand at a pure demand node = Original demand
Supply at a transshipment node = Original supply + Buffer amount

Demand at a transshipment node = Original demand + Buffer amount

The buffer amount should be sufficiently large to allow all of the original supply (or demand)
units to pass through any of the transshipment nodes. Let B be the desired buffer amount; then
B = Total supply (or demand)
1000 + 1200 (or 800 + 900 + 500)
2200 cats

Using the buffer B and the unit shipping costs given in the network; we construct the equivalent
regular transportation model as in Table 5.44.

The solution of the resulting transportation model (determined by TORA) s shown in
Figure 5.8. Note the effect of transshipmeat: Dealer D2 receives 1400 cars, keeps 900 cars to sat-
1sfy its demand, and sends the remaining 500 cars to dealer D3.

PROBLEM SET 5.5A°

1. The network in Figure 5.9 gives the shipping routes from nodes 1 and 2 to nodes 5 and 6
by way of nodes 3 and 4. The unit shipping costs are shown on the respective arcs.

(a) Develop the corresponding transshipment model.

(b} Solve the problem, and show how the shipmcnfs are routed from the sources to the
destinations,

®You are encouraged to use TORA, Excel Solver, or AMPL ta solve the problems in this set.
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TABLE 544 Transshipment Model

T! T2 DI D2 D3

Pl

1000
P2

1200
ryl

B
T2

B
D1

B
D2

B

B B 860 +8 90+ B 500

800

FIGURE 5.8
Solution of the transshipment model

FIGURE 5.9

100 Network for Problem 1, Set 5.5a




232 Chapter 5 Transportation Model and Its Variants

2.

*q4,

In Problem 1, suppose that source node 1 can be linked to source node 2 with a unit ship-

ping cost of $1. The unit shipping cost from node 1 to node 3 is increased to $5. Formulate

the problem as a transshipment model, and find the optimum shipping schedule.

The network in Figure 5.10 shows the routes for shipping cars from three plants (nodes 1,

2, and 3} to three dealers (nodes 6 to 8) by way of two distribution centers (nodes 4 and

5). The shipping costs per car (in $100) are shown on the arcs.

(a) Solve the problem as a transshipment model.

(b} Find the new optimum solution assuming that distributior center 4 can sell 240 cars
directly to customers.

Consider the transportation problem in which two factories supply three stores with a

commodity. The numbers of supply units available at sources 1 and 2 are 200 and 300;

those demanded at stores 1,2, and 3 are 100, 200, and 50, respectively. Units may be trans-

shipped among the factories and the stores before reaching their final destination. Find

the optimal shipping schedule based on the unit costs in Table 5.45.

Consider the oil pipeline network shown in Figure 5.11. The different nodes represent

pumping and receiving stations. Distances in miles between the stations are shown on the

network. The transportation cost per gallon between two nodes is directly proportional to

the length of the pipeline. Develop the associated transshipment model, and find the op-

timum solution.

Shortest-Route Problem. Find the shortest route between nodes 1 and 7 of the network in

Figure 5.12 by formulating the problem as a transshipment model. The distances between

the different nodes are shown on the network. (Hinte: Assuine that node 1 has a et sup-

ply of 1 unit, and node 7 has a net demand also of 1 unit.)

FIGURE 5.10
Network for Problem 3, Set 5.5a

TABLE 5.45 Data for Problem 4

Factory Store
1 2 1 2 3

Factory 1 $0 $6 57 £8
2 36 $0 5 $4
1 $7 $2 30 35
Store 2 51 $5 1 31 $0

3088 59 37 36
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50,000 60,040 (gallons)

FIGURE 5.11
Network for Problem 5, Set 5.5a

k4

FIGURE 5.12
Network for Problem 6, Set 5.5a

7. In the transshipment model of Example 5.5-1, define x;; as the amount shipped from
node  to node j. The problem can be formulated as a linear program in which each
node produces a constraint equation. Develop the linear program, and show that the

resulting formulation has the characteristic that the constraint coefficients, aj;, of the
variable x;; are

1,in constraint {
a,-j = _1, in COrlStl‘ajnlj
0, otherwise

8. Anemployment agency must provide the following laborers over the next 5 months:

Month 1 2 3 4 5

No. of laborers 100 120 80 170 50

233
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Because the cost of labor depends on the length of employment, it may be more eco-
nomical to keep more laborers than needed during some months of the 3-month plan-
ning horizon. The following table estimates the Jabor cost as a function of the length of
employment:

Months of employment 1 2 3 4 it

Cost per faborer (§) 100 130 180 220 250

Formulate the problem as a linear program. Then, using proper algebraic manipula-
tions of the constraint equations, show that the model can be converted to a transship-
ment model, and find the optimuim solution. (Hinr: Use the transshipment characteristic
in Problem 7 to convert the constraints of the scheduling problem into those of the trans-
shipment model.)
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